Recent advances in aerosol and combustion science and engineering now allow scalable flame synthesis of mixed oxides, metal salts and even pure metals in the form of nanoparticles and films with closely controlled characteristics. In this way, high purity materials with novel metastable phases are made that are not accessible by conventional wet-phase and solid state processes. Here, flame processes are classified into vapour-fed and liquid-fed ones depending on the employed state of the metal precursor. Liquid-fed flame processes are distinguished for their flexibility in producing materials of various compositions and morphologies that result in unique product functionalities. Parameters controlling the characteristics of flame-made particles and films are summarized and selected classes of materials are reviewed focusing on catalysts, sensors, biomaterials (orthopaedic, dental or nutritional), electroceramics (fuel cells, batteries) and phosphors exhibiting superior performance over conventionally made ones. Just a few years ago it seemed impossible to make these materials in the gas phase. Finally, health effects of such particles are discussed while future challenges and opportunities for flame-made materials are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.