Lung cancer is the world's leading cause of cancer death. The convolutional neural network (CNN) has been proved able to classify between malignant and benign tissues on CT scan images. In this paper, a deep neural network is designed based on GoogleNet, a pre-trained CNN. To reduce the computing cost and avoid overfitting in network learning, the densely connected architecture of the proposed network was sparsified, with 60 % of all neurons deployed on dropout layers. The performance of the proposed network was verified through a simulation on a pre-processed CT scan image dataset: The Lung Image Database Consortium (LIDC) dataset, and compared with that of several pre-trained CNNs, namely, AlexNet, GoogleNet and ResNet50. The results show that our network achieved better classification accuracy than the contrastive networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.