Integrated diffusion tensor-T 2 measurements were made on normal and edematous rat muscle, and the data were fitted with one-and two-compartment models, respectively. Edematous muscle exhibited a short-lived component (T 2 = 28 ± 6 ms) with diffusion characteristics similar to that of normal muscle and a long-lived component (T 2 = 96 ± 27 ms) with greater mean apparent diffusion coefficient (ADC) and lower fractional anisotropy (FA). With this two-component description of diffusion and relaxation, values of ADC and FA estimated with a conventional pulsed-gradient spin echo sequence will depend on the echo time, relative fraction of short-and long-lived water signals, as well as the intrinsic ADC and FA values within the tissue. Based on the relative differences in water diffusion properties between long-lived and short-lived water signals, as well as the similarities between the short-lived component and normal tissue, it is postulated that these two signal components are largely reflective of intra-and extra-cellular water.
Brock AA, Friedman RM, Fan RH, Roe AW. Optical imaging of cortical networks via intracortical microstimulation. J Neurophysiol 110: 2670 -2678. First published September 11, 2013 doi:10.1152/jn.00879.2012.-Understanding cortical organization is key to understanding brain function. Distinct neural networks underlie the functional organization of the cerebral cortex; however, little is known about how different nodes in the cortical network interact during perceptual processing and motor behavior. To study cortical network function we examined whether the optical imaging of intrinsic signals (OIS) reveals the functional patterns of activity evoked by electrical cortical microstimulation. We examined the effects of current amplitude, train duration, and depth of cortical stimulation on the hemodynamic response to electrical microstimulation (250-Hz train, 0.4-ms pulse duration) in anesthetized New World monkey somatosensory cortex. Electrical stimulation elicited a restricted cortical response that varied according to stimulation parameters and electrode depth. Higher currents of stimulation recruited more areas of cortex than smaller currents. The largest cortical responses were seen when stimulation was delivered around cortical layer 4. Distinct local patches of activation, highly suggestive of local projections, around the site of stimulation were observed at different depths of stimulation. Thus we find that specific electrical stimulation parameters can elicit activation of single cortical columns and their associated columnar networks, reminiscent of anatomically labeled networks. This novel functional tract tracing method will open new avenues for investigating relationships of local cortical organization. intrinsic signal optical imaging; electrical microstimulation PRIMATE CEREBRAL CORTEX is composed of a collection of cortical columns. These columns are 100-to 250-m-sized processing units that are interconnected to form distinct stimulusspecific processing networks. With this organization, the cerebral cortex is able to process information in parallel, perhaps best exemplified by the anatomical and functional organization found within visual cortical areas (see, e.g., Hubel 1984a, 1984b; Ts'o and Gilbert 1988). Anatomical and electrophysiological connectivity studies in V1 and V2 have revealed separate networks strongly associated with color processing (in the blobs in V1 and thin stripes in V2) and orientation selectivity (in the interblob regions and thick/pale stripes), respectively. Ongoing research is still revealing how these feature-specific networks generate the perception of the visual world.
Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception.
Currently, we lack consensus regarding the organization along the anterior border of dorsomedial V2 in primates. Previous studies suggest that this region could be either the dorsomedial area, characterized by both an upper and a lower visual field representation, or the dorsal aspect of area V3, which only contains a lower visual field representation. We examined these proposals by using optical imaging of intrinsic signals to investigate this region in the prosimian galago (Otole-mur garnettii). Galagos represent the prosimian radiation of surviving primates; cortical areas that bear strong resemblances across members of primates provide a strong argument for their early origin and conserved existence. Based on our mapping of horizontal and vertical meridian representations, visuotopy, and orientation preference, we find a clear lower field representation anterior to dorsal V2 but no evidence of any upper field representation. We also show statistical differences in orientation preference patches between V2 and V3. We additionally supplement our imaging results with electrode array data that reveal differences in the average spatial frequency preference, average temporal frequency preference, and sizes of the receptive fields between V1, V2, and V3. The lack of upper visual field representation along with the differences between the neighboring visual areas clearly distinguish the region anterior to dorsal V2 from earlier visual areas and argue against a DM that lies along the dorsomedial border of V2. We submit that the region of the cortex in question is the dorsal aspect of V3, thus strengthening the possibility that V3 is conserved among primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.