There are many ways to build a predictive model from data. Besides the numerous classification or regression algorithms to choose from, there are countless possibilities of useful data transformation prior to modeling. To assist in discovering good predictive analytics workflows, we introduced recently a collaborative analytics system that allows workflow sharing and reuse. We designed a recommendation engine for the system to enable matching of analytics needs with relevant workflows stored in repository. The engine relies on meta-predictive modeling of traffic-analysis workflow-characteristics. In this paper, we present a feasibility study of applying this collaborative analytics system to predict traffic congestion. Different ways to build predictive models from traffic dataset are pooled as shared workflows. We demonstrate that through dynamic recommendation of workflows that are suitable for the real-time varying traffic data, a reliable congestion prediction can be achieved. The promising results showcase that systematic collaboration among data scientists made possible by our system can be a powerful tool to produce very accurate prediction from data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.