Summary
1. Bigheaded carp, including both silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp, are successful invasive fishes that threaten global freshwater biodiversity. High phenotypic plasticity probably contributes to their success in novel ecosystems, although evidence of plasticity in several spawning traits has hitherto been largely anecdotal or speculative.
2. We collected drifting eggs from a Midwestern U.S.A. river from June to September 2011 and from April to June 2012 to investigate the spawning traits of bigheaded carp in novel ecosystems.
3. Unlike reports from the native range, the presence of drifting bigheaded carp eggs was not related to changes in hydrological regime or mean daily water temperature. Bigheaded carp also exhibited protracted spawning, since we found drifting eggs throughout the summer and as late as 1 September 2011. Finally, we detected bigheaded carp eggs in a river reach where the channel is c. 30 m wide with a catchment area of 4579 km2, the smallest stream in which spawning has yet been documented.
4. Taken with previous observations of spawning traits that depart from those observed within the native ranges of both bighead and silver carp, our findings provide direct evidence that bigheaded carp exhibit plastic spawning traits in novel ecosystems that may facilitate invasion and establishment in a wider range of river conditions than previously envisaged.
Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.
The development of a biomarker for rapid detection of intersex is desirable to researchers and fisheries managers alike. The first step is to identify a marker that has a dimorphic expression pattern. With a focus on sex-specific genes, we assessed the use of vitellogenin (vtg), forkhead box L2 (foxl2) and doublesex and mab-3-related transcription factor 1 (dmrt1) as molecular biomarkers for the identification of gender in shovelnose sturgeon (Scaphirhynchus platorynchus), a species known to have intersex individuals. A total of 61 shovelnose sturgeons were sampled from the Wabash River, Indiana, in April 2008. Results from our study indicate that least 7.5% of the non-females had testicular oocytes. Expression level of liver vtg was not higher in females than males, nor was gonad dmrt1 expression found to be higher in males. Only the expression of foxl2 was significantly greater in females and was found to be useful for identifying gender. Variation in expression levels of foxl2 in gonads of intersex fish limited its usefulness as a single biomarker for identifying this condition. Instead, the use of foxl2 to dmrt1 (foxl2 transcript abundance/dmrt1 transcript abundance) may be useful in the identification of intersex fish, as this ratio increased with increased feminization. We conclude that foxl2 can be used to identify sex, but not intersex sturgeon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.