Key message β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. Abstract In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F 1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.
Banana Xanthomonas Wilt (BXW) is an important emerging and non-curable infectious plant pathogen in sub-Saharan Africa that can cause up to 100% yield loss, negatively impacting sustainable access to food and income to more than 100 million banana farmers. This study disentangles adopters into partial and full adopters to investigate the factors that are relevant to sustain the adoption process of BXW control practices and quantifies the impact of adopting the practices. Data from a randomly selected sample of 1200 banana farmers in Uganda where the disease is endemic was used. A multinomial logit model was used to determine the factors affecting adoption of control practices and augmented inverse probability weighting was employed to estimate the impacts of adoption on banana productivity and sales. Results show that training a woman farmer and having diverse sources of information about BXW control practices increased adoption of the control practices and reduced the disease incidences. Farmers who adopted all the recommended control practices achieved significantly the highest values of banana production and sales. We conclude that improving information access through farmers’ preferred communication channels, having women-inclusive trainings, and a combination of cultural practices are effective ways for sustaining adoption of the control practices.
Crowdsourced citizen science is an emerging approach in plant sciences. The triadic comparison of technologies (tricot) approach has been successfully utilized by demand-led breeding programmes to identify varieties for dissemination suited to specific geographic and climatic regions. An important feature of this approach is the independent way in which farmers individually evaluate the varieties on their own farms as “citizen scientists.” In this study, we adapted this approach to evaluate consumer preferences to boiled sweetpotato [Ipomoea batatas (L.) Lam] roots of 21 advanced breeding materials and varieties in Ghana and 6 released varieties in Uganda. We were specifically interested in evaluating if a more independent style of evaluation (home tasting) would produce results comparable to an approach that involves control over preparation (centralized tasting). We compiled data from 1,433 participants who individually contributed to a home tasting (de-centralized) and a centralized tasting trial in Ghana and Uganda, evaluating overall acceptability, and indicating the reasons for their preferences. Geographic factors showed important contribution to define consumers' preference to boiled sweetpotato genotypes. Home and centralized tasting approaches gave similar rankings for overall acceptability, which was strongly correlated to taste. In both Ghana and Uganda, it was possible to robustly identify superior sweetpotato genotypes from consumers' perspectives. Our results indicate that the tricot approach can be successfully applied to consumer preference studies.
This article presents the attributes of the first East African highland banana hybrid, 'Kiwangaazi' (Fig. 1), which was recently selected, released, and added to the national cultivar list in Uganda. The 'matooke' hybrid 'Kiwangaazi' was conventionally bred at Kawanda by crossing the tetraploid hybrid '1201k-1' ('Nakawere' AAA • 'Calcutta4' AA) with the improved diploid 'SH3217' AA. The main target was black Sigatoka resistance, a disease caused by the fungal pathogen Mycosphaerella fijiensis, ranked as the most important constraint to the production of the East African highland bananas, especially in the low lands (covering most of central and eastern Uganda). 'Kiwangaazi', together with other hybrids was evaluated for black Sigatoka response, nematode and weevil damage, yield, and consumer acceptability. The cultivar was evaluated under the code 'M9', and released by the national variety release committee as 'KABANA 6H'. The name 'Kiwangaazi' was coined by farmers who participated in the on-farm evaluation studies. In the local language (Luganda), 'Kiwangaazi' means ''long lasting.'' Due to high pest and disease pressure, banana plantations can only last for 3-5 years, especially in central and eastern Uganda. However, due to its pests and disease tolerance, farmers observed that 'M9' plants remain vigorous after 5 years, hence the name 'Kiwangaazi'. Description
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.