Abstract:The aims of this study were to investigate the feasibility of generating 3D structures directly in rapid-hardening Portland cement (RHPC) using 3D Printing (3DP) technology. 3DP is a Additive Layer Manufacturing (ALM) process that generates parts directly from CAD in a layer-wise manner. 3D structures were successfully printed using a polyvinylalcohol: RHPC ratio of 3:97 w/w, with print resolutions of better than 1mm. The test components demonstrated the manufacture of features, including off-axis holes, overhangs / undercuts etc that would not be manufacturable using simple mould tools. Samples hardened by 1 day postbuild immersion in water at RT offered Modulus of Rupture (MOR) values of up to 0.8±0.1MPa, and, after 26 days immersion in water at RT, offered MOR values of 2.2±0.2MPa, similar to bassanite-based materials more typically used in 3DP (1-3 MPa). Post-curing by water immersion restructured the structure, removing the layering typical of ALM processes, and infilling porosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.