Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.
Post-exercise hypotension is an important event for blood pressure regulation, especially in hypertensive individuals. Although post-exercise hypotension is a well-known phenomenon, the mechanism responsible is still unclear. The kallikrein-kinin system is involved in blood pressure control, but its role in post-exercise hypotension has not yet been investigated. Thus, the purpose of this study was to investigate the involvement of the vasodilators bradykinin and des-Arg(9)-BK and kallikrein activity in post-exercise hypotension promoted by 35 min of cycle ergometer (CE) or circuit weight-training (CWT) bouts in normotensive and hypertensive individuals. A significant decrease in mean arterial pressure at 45 and 60 min after CE and 45 min after CWT was observed in normotensive individuals. Hypertensive values of mean arterial pressure were significantly reduced at 45 and 60 min after CE and at 60 min after CWT. Before exercise, plasma bradykinin concentrations and kallikrein activity were higher in hypertensive compared to normotensive volunteers. Kinin levels increased in the groups evaluated at the end of the training period and 60 min post-exercise. These data suggest that the kallikrein-kinin system may be involved in post-exercise hypotension in normotensive and hypertensive individuals subjected to CE and CWT bouts.
(1) Background: The present work aims to conduct a systematic review and meta-analysis of observational studies, in order to investigate the association of relative protein intake and physical function in older adults; (2) Methods: Observational studies, that investigated the association between protein intake and physical function in older adults, were retrieved from MEDLINE, SCOPUS, CINAHL, AgeLine, EMBASE, and Cochrane-CENTRAL. Two independent researchers conducted study selection and data extraction; (3) Results: Very high protein intake (≥1.2 g/kg/day) and high protein intake (≥1.0 g/kg/day) groups showed better lower limb physical functioning and walking speed (WS) performance, respectively, in comparison to individuals who present relative low protein (<0.80 g/kg/day) intake. On the other hand, relative high protein intake does not seem to propitiate a better performance on isometric handgrip (IHG) and chair rise in comparison to relative low protein intake. In addition, there were no significant differences in the physical functioning of high and middle protein intake groups; (4) Conclusions: In conclusion, findings of the present study indicate that a very high (≥1.2 g/kg/day) and high protein intake (≥1.0 g/kg/day) are associated with better lower-limb physical performance, when compared to low protein (<0.80 g/kg/day) intake, in community-dwelling older adults. These findings act as additional evidence regarding the potential need to increase protein guidelines to above the current recommendations. However, large randomized clinical trials are needed to confirm the addictive effects of high-protein diets (≥1.0 g/kg/day) in comparison to the current recommendations on physical functioning. All data are available in the Open ScienceFramework.
Epidemiologic studies suggest that moderately intense training promotes augmented immune function, whereas strenuous exercise can cause immunosupression. Because the combat of cancer requires high immune function, high-intensity exercise could negatively affect the host organism; however, despite the epidemiologic data, there is a lack of experimental evidence to show that high-intensity training is harmful to the immune system. Therefore, we tested the influence of high-intensity treadmill training (10 weeks, 5 days/week, 30 mins/day, 85% VO(2)max) on immune system function and tumor development in Walker 256 tumor-bearing Wistar rats. The metabolism of glucose and glutamine in lymphocytes and macrophages was assessed, in addition to some functional parameters such as hydrogen peroxide production, phagocytosis, and lymphocyte proliferative responses. The metabolism of Walker 256 cells was also investigated. Results demonstrated that high-intensity training increased the life span of tumor-bearing rats, promoted a reduction in tumor mass, and prevented indicators of cachexia. Several changes, such as a reduction in body weight and food intake and activation of glutamine metabolism in macrophages and lymphocytes induced by the presence of Walker 256 tumor, were prevented by high intensity training. The reduction in tumor growth was associated with an impairment of tumor cell glucose and glutamine metabolism. These data suggest that high-intensity exercise training may be a viable strategy against tumors.
In aged rats, insulin signaling pathway (ISP) is impaired in tissues that play a pivotal role in glucose homeostasis, such as liver, skeletal muscle, and adipose tissue. Moreover, the aging process is also associated with obesity and reduction in melatonin synthesis from the pineal gland and other organs. The aim of the present work was to evaluate, in male old obese Wistar rats, the effect of melatonin supplementation in the ISP, analyzing the total protein amount and the phosphorylated status (immunoprecipitation and immunoblotting) of the insulin cascade components in the rat hypothalamus, liver, skeletal muscle, and periepididymal adipose tissue. Melatonin was administered in the drinking water for 8- and 12 wk during the night period. Food and water intake and fasting blood glucose remained unchanged. The insulin sensitivity presented a 2.1-fold increase both after 8- and 12 wk of melatonin supplementation. Animals supplemented with melatonin for 12 wk also presented a reduction in body mass. The acute insulin-induced phosphorylation of the analyzed ISP proteins increased 1.3- and 2.3-fold after 8- and 12 wk of melatonin supplementation. The total protein content of the insulin receptor (IR) and the IR substrates (IRS-1, 2) remained unchanged in all investigated tissues, except for the 2-fold increase in the total amount of IRS-1 in the periepididymal adipose tissue. Therefore, the known age-related melatonin synthesis reduction may also be involved in the development of insulin resistance and the adequate supplementation could be an important alternative for the prevention of insulin signaling impairment in aged organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.