Pressure perturbation calorimetry (PPC), differential scanning calorimetry (DSC), and time-resolved Fourier transform infrared spectroscopy (FTIR) have been employed to investigate aggregation of bovine insulin at pH 1.9. The aggregation process exhibits two distinguished phases. In the first phase, an intermediate molten globule-like conformational state is transiently formed, reflected by loose tertiary contacts and a robust H/D-exchange. This is followed by unfolding of the native secondary structure. The unfolding of insulin is fast, endothermic, partly reversible, and accompanied by a volume expansion of approximately 0.2%. The second phase consists of actual aggregation: an exothermic irreversible process revealing typical features of nucleation-controlled kinetics. The volumetric changes associated with the second phase are small. The concentration-dependence of DSC scans does not support a monomer intermediate model. While insulin aggregation under ambient pressure is fast and quantitative, pressure as low as 300 bar is sufficient to prevent the aggregation completely, as high-pressure FTIR spectroscopy revealed. This is explained in terms of the high pressure having an adverse effect on the thermal unfolding of insulin, and therefore preventing occurrence of the aggregation-prone intermediate. A comparison of the aggregation in H(2)O and D(2)O shows that the isotopic substitution has diverse effects on both the phases of aggregation. In heavy water, a more pronounced volume expansion accompanies the unfolding stage, while only the second phase shifts to higher temperature.
On the basis of the predictions of statistical-thermodynamic models, it is postulated that excluded volume effects may play a significant role in the stability, interaction, and function of proteins. We studied the effects of confinement on protein un/refolding and stability. Our approach was to encapsulate a model protein, RNase A, in a mesoporous silica, MCM-48, with glasslike wall structure and with well-defined pores to create a crowded microenvironment. To the best of our knowledge, this is the first report where pressure perturbation and differential scanning calorimetric techniques are employed to evaluate the stability, hydration, and volumetric properties of the confined protein. A drastic increase in protein stability ( approximately 30 degrees C increase in unfolding temperature) is observed. The increase in stability is probably not only due to a restriction in conformational space (excluded volume effect due to nonspecific interactions) but also due to an increased strength of hydration of the protein within the narrow silica pores.
We used pressure perturbation calorimetry (PPC), a relatively new and efficient technique, to study the solvation and volumetric properties of amino acids and peptides as well as of proteins in their native and unfolded state. In PPC, the coefficient of thermal expansion of the partial volume of the protein is deduced from the heat consumed or produced after small isothermal pressure jumps, which strongly depends on the interaction of the protein with the solvent or cosolvent at the protein-solvent interface. Furthermore, the effects of various chaotropic and kosmotropic cosolvents on the volume and expansivity changes of proteins were measured over a wide concentration range with high precision. Depending on the type of cosolvent and its concentration, specific differences were found for the solvation properties and unfolding behaviour of the proteins, and the volume change upon unfolding may even change sign. To yield a molecular interpretation of the different terms contributing to the partial protein volume and its temperature dependence, and hence a better understanding of the PPC data, molecular dynamics computer simulations on SNase were also carried out and compared with the experimental data. The PPC studies introduced aim to obtain more insight into the basic thermodynamic properties of protein solvation and volume effects accompanying structural transformations of proteins in various cosolvents on one hand, as these form the basis for understanding their physiological functions and their use in drug designing and formulations, but also to initiate further valuable applications in studies of other biomolecular and chemical systems.
We investigated the temperature- and pressure-dependent structure and phase behavior of a solvated oligopeptide, GVG(VPGVG), which serves as a minimalistic elastin-like model system, over a large region of the thermodynamic phase field, ranging from 2 to 120 degrees C and from ambient pressure up to approximately 10 kbar, applying various spectroscopic (CD, FT-IR) and thermodynamic (DSC, PPC) measurements. We find that this octapeptide behaves as a two-state system which undergoes the well-known inverse-temperature folding transition occurring at T approximately 36 degrees C, and, in addition, a slow trend reversal at higher temperatures, finally leading to a reentrant unfolding close to the boiling point of water. Furthermore, the pressure-dependence of the folding/unfolding transition was studied to yield a more complete picture of the p, T-stability diagram of the system. A molecular-level picture of these processes, in particular on the role of water for the folding and unfolding events of the peptide, presented with the help of molecular-dynamics simulations, is presented in a companion article in this issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.