Reduced generation of multiple motile cilia (RGMC) is a rare mucociliary clearance disorder. Affected persons suffer from recurrent infections of upper and lower airways because of highly reduced numbers of multiple motile respiratory cilia. Here we report recessive loss-of-function and missense mutations in MCIDAS-encoding Multicilin, which was shown to promote the early steps of multiciliated cell differentiation in Xenopus. MCIDAS mutant respiratory epithelial cells carry only one or two cilia per cell, which lack ciliary motility-related proteins (DNAH5; CCDC39) as seen in primary ciliary dyskinesia. Consistent with this finding, FOXJ1-regulating axonemal motor protein expression is absent in respiratory cells of MCIDAS mutant individuals. CCNO, when mutated known to cause RGMC, is also absent in MCIDAS mutant respiratory cells, consistent with its downstream activity. Thus, our findings identify Multicilin as a key regulator of CCNO/FOXJ1 for human multiciliated cell differentiation, and highlight the 5q11 region containing CCNO and MCIDAS as a locus underlying RGMC.
Reduced generation of multiple motile cilia (RGMC) is a novel chronic destructive airway disease within the group of mucociliary clearance disorders with only few cases reported. Mutations in two genes, CCNO and MCIDAS, have been identified as a cause of this disease, both leading to a greatly reduced number of cilia and causing impaired mucociliary clearance. This study was designed to identify the prevalence of CCNO mutations in Israel and further delineate the clinical characteristics of RGMC. We analyzed 170 families with mucociliary clearance disorders originating from Israel for mutations in CCNO and identified two novel mutations (c.165delC, p.Gly56Alafs*38; c.638T>C, p.Leu213Pro) and two known mutations in 15 individuals from 10 families (6% prevalence). Pathogenicity of the missense mutation (c.638T>C, p.Leu213Pro) was demonstrated by functional analyses in Xenopus. Combining these 15 patients with the previously reported CCNO case reports revealed rapid deterioration in lung function, an increased prevalence of hydrocephalus (10%) as well as increased female infertility (22%). Consistent with these findings, we demonstrate that CCNO expression is present in murine ependyma and fallopian tubes. CCNO is mutated more frequently than expected from the rare previous clinical case reports, leads to severe clinical manifestations, and should therefore be considered an important differential diagnosis of mucociliary clearance disorders.
The clinical spectrum of ciliopathies affecting motile cilia spans impaired mucociliary clearance in the respiratory system, laterality defects including heart malformations, infertility and hydrocephalus. Using linkage analysis and whole exome sequencing, we identified two recessive loss-of-function MNS1 mutations in five individuals from four consanguineous families: 1) a homozygous nonsense mutation p.Arg242* in four males with laterality defects and infertility and 2) a homozygous nonsense mutation p.Gln203* in one female with laterality defects and recurrent respiratory infections additionally carrying homozygous mutations in DNAH5. Consistent with the laterality defects observed in these individuals, we found Mns1 to be expressed in mouse embryonic ventral node. Immunofluorescence analysis further revealed that MNS1 localizes to the axonemes of respiratory cilia as well as sperm flagella in human. In-depth ultrastructural analyses confirmed a subtle outer dynein arm (ODA) defect in the axonemes of respiratory epithelial cells resembling findings reported in Mns1-deficient mice. Ultrastructural analyses in the female carrying combined mutations in MNS1 and DNAH5 indicated a role for MNS1 in the process of ODA docking (ODA-DC) in the distal respiratory axonemes. Furthermore, co-immunoprecipitation and yeast two hybrid analyses demonstrated that MNS1 dimerizes and interacts with the ODA docking complex component CCDC114. Overall, we demonstrate that MNS1 deficiency in humans causes laterality defects (situs inversus) and likely male infertility and that MNS1 plays a role in the ODA-DC assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.