Ion-exchange membranes hybridized with laser-induced graphene (LIG) might lead to membranes with functional surface effects such as antifouling, antibacterial, or joule heating effects; however, understanding the change in the electrical properties of the membrane is essential. Here we studied LIG-modified ion-exchange polymeric membranes using electrochemical impedance spectroscopy (EIS). The conductivity of the anionic sulfonated poly(ether sulfone) membranes and the effective capacitance of the membrane–electrolyte interface were obtained by fitting the EIS spectra to an electrochemical equivalent circuit and compared with LIG-modified nonionic poly(ether sulfone) films. The transport selectivity (as the relative permeability) of counterions (K+, Na+, Mg2+, Ca2+) across the membrane was quantified using the membrane’s conductivities obtained from the EIS measurements. The total ohmic resistance of the membrane was directly correlated to the polymer thickness (with negligible contribution from the conductive LIG layer), thereby establishing EIS as a rapid, low-cost, and noninvasive method to accurately probe substrate usage in LIG modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.