There is increasing interest in employing shotgun sequencing, rather than amplicon sequencing, to analyze microbiome samples. Typical projects may involve hundreds of samples and billions of sequencing reads. The comparison of such samples against a protein reference database generates billions of alignments and the analysis of such data is computationally challenging. To address this, we have substantially rewritten and extended our widely-used microbiome analysis tool MEGAN so as to facilitate the interactive analysis of the taxonomic and functional content of very large microbiome datasets. Other new features include a functional classifier called InterPro2GO, gene-centric read assembly, principal coordinate analysis of taxonomy and function, and support for metadata. The new program is called MEGAN Community Edition (CE) and is open source. By integrating MEGAN CE with our high-throughput DNA-to-protein alignment tool DIAMOND and by providing a new program MeganServer that allows access to metagenome analysis files hosted on a server, we provide a straightforward, yet powerful and complete pipeline for the analysis of metagenome shotgun sequences. We illustrate how to perform a full-scale computational analysis of a metagenomic sequencing project, involving 12 samples and 800 million reads, in less than three days on a single server. All source code is available here: https://github.com/danielhuson/megan-ce
Conceptually similar to modifications of DNA, mRNAs undergo chemical modifications, which can affect their activity, localization, and stability. The most prevalent internal modification in mRNA is the methylation of adenosine at the N6-position (m6A). This returns mRNA to a role as a central hub of information within the cell, serving as an information carrier, modifier, and attenuator for many biological processes. Still, the precise role of internal mRNA modifications such as m6A in human and murine-dilated cardiac tissue remains unknown. Transcriptome-wide mapping of m6A in mRNA allowed us to catalog m6A targets in human and murine hearts. Increased m6A methylation was found in human cardiomyopathy. Knockdown and overexpression of the m6A writer enzyme Mettl3 affected cell size and cellular remodeling both in vitro and in vivo. Our data suggest that mRNA methylation is highly dynamic in cardiomyocytes undergoing stress and that changes in the mRNA methylome regulate translational efficiency by affecting transcript stability. Once elucidated, manipulations of methylation of specific m6A sites could be a powerful approach to prevent worsening of cardiac function.
BackgroundMicrobiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes.MethodsWe present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled.ResultsUsing published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered.ConclusionsProtein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.