Abstract. Current estimates of sediment and nutrient loads from the Tully-Murray floodplain to the Great Barrier Reef lagoon are updated by taking explicit account of flood events. New estimates of flood discharge that include over-bank flows are combined with direct measurements of sediment and nutrient concentrations in flood waters to calculate the loads of sediment and nutrient delivered to the ocean during 13 floods that occurred between 2006 and 2008. Although absolute concentrations of sediment and nutrients were quite low, the large volume of water discharged during floods means that they make a large contribution (30-50%) to the marine load. By not accounting for flood flows correctly, previous estimates of the annual average discharge are 15% too low and annual loads of nitrogen and phosphorus are 47% and 32% too low respectively. However, because sediments may be source-limited, accounting for flood flows simply dilutes their concentration and the resulting annual average load is similar to that previously estimated. Flood waters also carry more dissolved organic nitrogen than dissolved inorganic nitrogen and this is the opposite of their concentrations in river water. Consequently, dissolved organic nitrogen loads to the ocean may be around twice those previously estimated from riverine data.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench-marked cross-sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change . The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross-section surveys suggest that channel width has increased by an average of 0·74 (± ± ± ± ±0·47) m a − − − − −1 over the study period (or ~0·8% yr − − − − −1 ). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a − − − − −1 . The cross-section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Figure 1. (A) Daintree River catchment, showing the location of the main stream gauge, broad vegetation types and major tributaries. (B) Study reach between the stream gauge and Daintree Village, showing the location of field monitoring sites and additional aerial photo cross-sections and pin sites. This figure is available in colour online at
Excess sediments from agricultural areas are having a detrimental impact on the Great Barrier Reef, and threaten the long-term viability of rangeland grazing. Changes to grazing management have been promoted as a mechanism for reducing excess sediment loss from grazed rangelands. This paper summarises the results of a 10-year study (2002–11) on a property in the Burdekin catchment that investigated the role of reduced stocking rates and rotational wet season resting on hill-slope and catchment runoff and sediment yields. Ground cover and pasture biomass were evaluated using on-ground surveys and remote sensing. During this study, average ground cover increased from ~35 to ~80% but pasture biomass was low due to the dominance of Bothriochloa pertusa (77% of composition). The percentage of deep-rooted perennial species increased from ~7% of pasture composition in 2002 to ~15% in 2011. This is still considerably lower than the percentage that occupied this property in 1979 (~78%). The increased ground cover resulted in progressively lower hill-slope runoff coefficients for the first event in each wet season, but annual catchment runoff did not respond significantly to the increasing ground cover during the study. Hill-slope and catchment sediment concentrations did decline with the increased ground cover, yet catchment sediment yields increased proportionally to annual runoff due to the contribution of sub-surface (scald, gully and bank) erosion. This study has demonstrated that changes to grazing management can reduce sediment concentrations leaving B. pertusa-dominated pastures, as B. pertusa is an effective controller of surface erosion. To further reduce the runoff that is fuelling gully and bank erosion, the proportion of deep-rooted native perennial grasses needs to be increased. It is argued that more than 10 years will be required to restore healthy eco-hydrological function to these previously degraded and low productivity rangelands. Even longer timescales will be needed to meet current targets for water quality.
Abstract:The ability of wetlands to improve the quality of water has long been recognized and has led to the proliferation of wetlands as a means to treat diffuse and point source pollutants from a range of land uses. However, much of the existing research has been undertaken in temperate climates with a paucity of information on the effectiveness of wetlands, particularly natural wetlands, in tropical regions. This paper contributes to addressing this issue by presenting a comprehensive measurement based assessment of the potential for a naturally occurring tropical riverine wetland to improve the quality of the water entering it. We found small net imports and exports of sediment to/from the wetland in individual years, but over the longer term this kind of wetland is neither a sink nor source of sediment. In contrast, phosphorus was continually removed by the wetland with an overall net reduction of 14%. However, it should be noted that there is no 'permanent' gaseous loss mechanism for phosphorus, and its removal from the water column is equal to its accumulation in the wetland soil. We found very little removal of nitrogen by this type of wetland from several analyses including: (i) Surface and groundwater fluxes, (ii) Estimation of water column and soil denitrification rates, (iii) Wetland residence times, and (iv) Hydraulic loading. We also found no clear evidence for transformation of nitrogen to more or less bio-available forms. Hence, while the benefits of using wetlands to improve water quality in controlled environments have been demonstrated in the literature, these benefits may not always be directly translated to unmanaged natural wetland systems when there is strong seasonality in flows and short residence time during the periods of maximum sediment and nutrient load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.