The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn's magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, and the icy satellites. The processes responsible for Saturn's aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn's magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct "forward modeling" and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge-energy-mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm 2 sr) foil time-of-flight (TOF) 234 S. M. KRIMIGIS ET AL. camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 • full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm 2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ ...
We study the electronic contribution to the thermal conductivity and the thermopower of Weyl and Dirac semimetals using a semiclassical Boltzmann approach. We investigate the effect of various relaxation processes including disorder and interactions on the thermoelectric properties, and also consider doping away from the Weyl or Dirac point. We find that the thermal conductivity and thermopower have an interesting dependence on the chemical potential that is characteristic of the linear electronic dispersion, and that the electron-electron interactions modify the Lorenz number. For the interacting system, we also use the Kubo formalism to obtain the transport coefficients. We find exact agreement between the Kubo and Boltzmann approaches at high temperatures. We also consider the effect of electric and magnetic fields on the thermal conductivity in various orientations with respect to the temperature gradient. Notably, when the temperature gradient and magnetic field are parallel, we find a large contribution to the longitudinal thermal conductivity that is quadratic in the magnetic field strength, similar to the magnetic field dependence of the longitudinal electrical conductivity due to the presence of the chiral anomaly when no thermal gradient is present.Comment: 17 pages, 2 Figure
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law (1/r α ) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of domain walls (kinks) into bound quasiparticles, analogous to mesonic bound states in high-energy physics. We show that these quasiparticles have signatures in the dynamics of order parameters following a global quench and the Fourier spectrum of these order parameters can be expolited as a direct probe of the masses of the confined quasiparticles. We introduce a two-kink model to qualitatively explain the phenomenon of long-range-interaction-induced confinement, and to quantitatively predict the masses of the bound quasiparticles. Furthermore, we illustrate that these quasiparticle states can lead to slow thermalization of onepoint observables for certain initial states. Our work is readily applicable to current trapped-ion experiments.Long-range interacting quantum systems occur naturally in numerous quantum simulators [1][2][3][4][5][6][7][8][9][10]. A paradigmatic model considers interactions decaying with distance r as a power law 1/r α . This describes the interaction term in trappedion spin systems [3,[11][12][13][14][15], polar molecules [16][17][18][19], magnetic atoms [5,20,21], and Rydberg atoms [1,2,22,23]. One remarkable consequence of long-range interactions is the breakdown of locality, where quantum information, bounded by linear 'light cones' in short-range interacting systems [24], can propagate super-ballistically or even instantaneously [25][26][27][28][29][30]. Lieb-Robinson linear light cones have been generalized to logarithmic and polynomial light cones for long-range interacting systems [25,26,31], and non-local propagation of quantum correlations in one-dimensional (1D) spin chains has been observed in trapped-ion experiments [12,13]. Moreover, 1D long-range interacting quantum spin chains can host novel physics that is absent in their short-range counterparts, such as continuous symmetry breaking [32,33].More recently, it has been shown that confinement-which has origins in high-energy physics-has dramatic signatures in the quantum quench dynamics of short-range interacting spin chains [34]. Owing to confinement, quarks cannot be directly observed in nature as they form mesons and baryons due to strong interactions [35,36]. An archetypal model with analogous confinement effects in quantum many-body systems is the 1D short-range interacting Ising model with both transverse and longitudinal fields [37][38][39][40][41][42]. For a vanishing longitudinal field, domain-wall quasiparticles propagate freely and map out light-cone spreading of quantum information [41][42][43][44]. As first proposed by , a nonzero longitudinal field induces an attractive linear potential between two domain walls and confines them into mesonic bound quasiparticles. Recently, Kormos et al. investigated the effect of these bound states on quench dynamics and showed that the non...
The Energetic Particle and Plasma Spectrometer (EPPS) package on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury is composed of two sensors, the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS). EPS measures the energy, angular, and compositional distributions of the high-energy components of the in situ electrons (>20 keV) and ions (>5 keV/nucleon), while FIPS measures the energy, angular, and compositional distributions of the low-energy components of the ion distributions (<50 eV/charge to 20 keV/charge). Both EPS and FIPS have very small footprints, and their combined mass (∼3 kg) is significantly lower than that of comparable instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.