Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations.
Biomedical decision making often requires relevant evidence from the biomedical literature. Retrieval of the evidence calls for a system that receives a natural language query for a biomedical information need and, among the huge amount of texts retrieved for the query, ranks relevant texts higher for further processing. However, state-of-the-art text rankers have weaknesses in dealing with biomedical queries, which often consist of several correlating concepts and prefer those texts that completely talk about the concepts. In this article, we present a technique, Proximity-Based Ranker Enhancer (PRE), to enhance text rankers by term-proximity information. PRE assesses the term frequency (TF) of each term in the text by integrating three types of term proximity to measure the contextual completeness of query terms appearing in nearby areas in the text being ranked.Therefore, PRE may serve as a preprocessor for (or supplement to) those rankers that consider TF in ranking, without the need to change the algorithms and development processes of the rankers. Empirical evaluation shows that PRE significantly improves various kinds of text rankers, and when compared with several state-of-the-art techniques that enhance rankers by term-proximity information, PRE may more stably and significantly enhance the rankers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.