This paper presents a general framework for multilateral turn-taking protocols and two fully specified protocols namely Stacked Alternating Offers Protocol (SAOP) and Alternating Multiple Offers Protocol (AMOP). In SAOP, agents can make a bid, accept the most recent bid or walk way (i.e., end the negotiation without an agreement) when it is their turn. AMOP has two different phases: bidding and voting. The agents make their bid in the bidding phase and vote the underlying bids in the voting phase. Unlike SAOP, AMOP does not support walking away option. In both protocols, negotiation ends when the negotiating agents reach a joint agreement or some deadline criterion applies. The protocols have been evaluated empirically, showing that SAOP outperforms AMOP with the same type of conceder agents in a time-based deadline setting. SAOP was used in the ANAC 2015 competition for automated negotiating agents.
We consider automated negotiation as a process carried out by software agents to reach a consensus. To automate negotiation, we expect agents to understand their user's preferences, generate offers that will satisfy their user, and decide whether counter offers are satisfactory. For this purpose, a crucial aspect is the treatment of preferences. An agent not only needs to understand its own user's preferences, but also its opponent's preferences so that agreements can be reached. Accordingly, this paper proposes a learning algorithm that can be used by a producer during negotiation to understand consumer's needs and to offer services that respect consumer's preferences. Our proposed algorithm is based on inductive learning but also incorporates the idea of revision. Thus, as the negotiation proceeds, a producer can revise its idea of the consumer's preferences. The learning is enhanced with the use of ontologies so that similar service requests can be identified and treated similarly. Further, the algorithm is targeted to learning both conjunctive as well as disjunctive preferences. Hence, even if the consumer's preferences are specified in complex ways, our algorithm can learn and guide the producer to create well-targeted offers. Further, our algorithm can detect whether some preferences cannot be satisfied early and thus consensus cannot be reached. Our experimental results show that the producer using our learning algorithm negotiates faster and more successfully with customers compared to several other algorithms.
Deep learning can be used to automate aircraft maintenance visual inspection. This can help increase the accuracy of damage detection, reduce aircraft downtime, and help prevent inspection accidents. The objective of this paper is to demonstrate the potential of this method in supporting aircraft engineers to automatically detect aircraft dents. The novelty of the work lies in applying a recently developed neural network architecture know by Mask R-CNN, which enables the detection of objects in an image while simultaneously generating a segmentation mask for each instance. Despite the small dataset size used for training, the results are promising and demonstrate the potential of deep learning to automate aircraft maintenance inspection. The model can be trained to identify additional types of damage such as lightning strike entry and exit points, paint damage, cracks and holes, missing markings, and can therefore be a useful decision-support system for aircraft engineers.
Convolutional Neural Networks combined with autonomous drones are increasingly seen as enablers of partially automating the aircraft maintenance visual inspection process. Such an innovative concept can have a significant impact on aircraft operations. Though supporting aircraft maintenance engineers detect and classify a wide range of defects, the time spent on inspection can significantly be reduced. Examples of defects that can be automatically detected include aircraft dents, paint defects, cracks and holes, and lightning strike damage. Additionally, this concept could also increase the accuracy of damage detection and reduce the number of aircraft inspection incidents related to human factors like fatigue and time pressure. In our previous work, we have applied a recent Convolutional Neural Network architecture known by MASK R-CNN to detect aircraft dents. MASK-RCNN was chosen because it enables the detection of multiple objects in an image while simultaneously generating a segmentation mask for each instance. The previously obtained F1 and F2 scores were 62.67% and 59.35%, respectively. This paper extends the previous work by applying different techniques to improve and evaluate prediction performance experimentally. The approach uses include (1) Balancing the original dataset by adding images without dents; (2) Increasing data homogeneity by focusing on wing images only; (3) Exploring the potential of three augmentation techniques in improving model performance namely flipping, rotating, and blurring; and (4) using a pre-classifier in combination with MASK R-CNN. The results show that a hybrid approach combining MASK R-CNN and augmentation techniques leads to an improved performance with an F1 score of (67.50%) and F2 score of (66.37%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.