Glioblastoma (GBM) is known as a tumor type, which arises from astrocytes. Several studies indicated that GBM tumor cells are malignant. This is because of the fact that they consist of different cell types, which are reproducing very quickly and are also supported by a large network of blood vessels. The correct identification of various stages of GBM could help to better treat the patients with this disease. Therefore, new biomarkers such as exosomes and microRNAs (miRNAs) may help us to learn more about GBM and they may also lead to a more effective treatment for patients with GBM. Exosomes have emerged as biological vehicles, which can perform various tasks in carcinogenesis pathways such as PI3K/AKT, SOX2, PTEN, ERK, and STAT3. The miRNAs are known as small noncoding RNAs that are involved in several GBM pathogenic events. These molecules have key roles in various biological processes such as angiogenesis, metastasis and tumor growth. In this study, we highlighted various exosomes and miRNAs that could be used for diagnosis and/or prognosis biomarkers in patients with GBM.
Transplantation of islet is a promising method in treatment of patients with type 1 diabetes mellitus (T1DM), however, is limited by islet shortage. The aim of this study was to prepare a polyethersulfone (PES) nanofibrous scaffolds to evaluate the pancreatic differentiation of human induced pluripotent stem cells (hiPSCs). The differentiation process in tissue culture dishes and PES scaffolds was evaluated at mRNA and protein level by RT-qPCR and immunofluorescence assay, respectively. The functionality of differentiated cells was determined by insulin and C-peptide release in response to glucose challenges. The results of this study showed that cells cultured on PES nanofibrous scaffolds exhibit more pancreatic b-cell characteristics as they express more pancreatic tissue-specific genes and proteins. Furthermore, the immunoassay showed that differentiated cells in both culture plates and PES scaffolds groups are functional and secrete C-peptide and insulin in response to glucose challenges. Altogether, the results of this study demonstrated that PES nanofibrous scaffold could provide the microenvironment that promotes the differentiation of induced pluripotent stem cells (iPSCs) into insulin producing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.