Understanding the droplet cloud and spray dynamics is important for the study of the ocean surface and marine boundary layer. The role that the wave energy and the type of wave breaking play in the resulting distribution and dynamics of droplets are yet to be understood. The aim of this work was to generate violent plunging breakers in the laboratory and analyze the spray production post-breaking, i.e. after the crest of the wave impacts in the free surface. The droplet sizes and their dynamics were measured with imaging techniques and the effect of different wind speeds on the droplet production was also considered. It was found that the mean radius increases with the wave energy content and the number of large droplets (radius > 1 mm) in the vertical direction increases with the presence of wind. Furthermore, the normalized distribution of droplet sizes is consistent with the distribution of ligament-mediated spray formation. Also, indications of turbulence affecting the droplet dynamics at wind speeds of 5 m/s were found. The amount of large droplets (radius > 1 mm) found in this work was larger than reported in field studies.
Detailed water kinematics are important for understanding atmosphere-ice-ocean energy transfer processes in the Arctic. There are few in situ observations of 2D velocity fields in the marginal ice zone. Particle tracking velocimetry and particle image velocimetry are well known laboratory techniques for measuring 2D velocity fields, but they usually rely on fragile equipment and pollutive plastic tracers. Therefore, in order to bring these methods to the field, we have developed a new system which combines a compact open-source remotely operated vehicle as an imaging device, and air bubbles as tracing particles. The data obtained can then be analyzed using image processing techniques tuned for field measurements in the polar regions. The properties of the generated bubbles, such as the relation between terminal velocity and diameter, have been investigated under controlled conditions. The accuracy and the spread of the velocity measurements have been quantified in a wave tank and compared with theoretical solutions. Horizontal velocity components under periodic waves were measured within the order of 10% accuracy. The deviation from theoretical solutions is attributed to the bubble inertia due to the accelerated flow. We include an example from an Arctic field expedition where the system was deployed and successfully tested from an ice floe. This work is an important milestone towards performing detailed 2D flow measurements under the ice in the Arctic, which we anticipate will help perform much needed direct observations of the dynamics happening under sea ice.
In this contribution we present the characterization of a bubble curtain produced with compressed air. The final goal is to implement a PIV system, with bubbles as tracers, that will help to understand drag and propulsion of a swimmer during a dolphin kick. The system will be used directly in a swimming pool. The first trials were made in a controlled water channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.