One of the strategies to genetically improve reproductive traits, despite their low inheritability, has been the identification of candidate genes. Therefore, the objective of this study was to detect candidate genes associated with fecundity through the fixation index (FST) and runs of homozygosity (ROH) of selection signatures in Katahdin ewes. Productive and reproductive records from three years were used and the genotypes (OvineSNP50K) of 48 Katahdin ewes. Two groups of ewes were identified to carry out the genetic comparison: with high fecundity (1.3 ± 0.03) and with low fecundity (1.1 ± 0.06). This study shows for the first time evidence of the influence of the CNOT11, GLUD1, GRID1, MAPK8, and CCL28 genes in the fecundity of Katahdin ewes; in addition, new candidate genes were detected for fecundity that were not reported previously in ewes but that were detected for other species: ANK2 (sow), ARHGAP22 (cow and buffalo cow), GHITM (cow), HERC6 (cow), DPF2 (cow), and TRNAC-GCA (buffalo cow, bull). These new candidate genes in ewes seem to have a high expression in reproduction. Therefore, future studies are needed focused on describing the physiological basis of changes in the reproductive behavior influenced by these genes.
Mastitis is a disease that causes significant economic losses, since resistance to mastitis is a difficult trait to be improved due to its multifactorial occurrence. Therefore, our objective was to characterize a Mexican Braunvieh cattle population for genetic resistance and susceptibility to mastitis. We used 66 SNP markers for 45 candidate genes in 150 animals. The average heterozygosity was 0.445 ± 0.076, a value higher than those reported for some European breeds. The inbreeding coefficient was slightly negative for resistance to subclinical (−0.058 ± 0.055) and clinical (−0.034 ± 0.076) mastitis, possibly due to low selection for the immunological candidate genes that influence these traits. The genotypic profiles for the candidate loci per K-means group were obtained, as well as the group distribution through the graphics of the principal component analysis. The genotypic profiles showed high genetic diversity among groups. Resistance to clinical mastitis had the lowest presence of the heterozygous genotypes. Although the percentage of highly inbred animals (>50%) is up to 13.3%, there are highly heterozygous groups in terms of the studied traits, a favorable indicator of the presence of genetic diversity. The results of this study constitute evidence of the genetic potential of the Mexican Braunvieh population to improve mastitis-related traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.