Let G be a (simple) connected graph with vertex and edge sets V (G) and E(G),respectively. A set S ⊆ V (G) is a hop dominating set of G if for each v ∈ V (G) \ S, there exists w ∈ S such that dG(v, w) = 2. The minimum cardinality of a hop dominating set of G, denoted by γh(G), is called the hop domination number of G. In this paper we revisit the concept of hop domination, relate it with other domination concepts, and investigate it in graphs resulting from some binary operations.
Let [Formula: see text] be a connected graph of order [Formula: see text]. A subset [Formula: see text] is a double hop dominating set (or a double [Formula: see text]-step dominating set) if [Formula: see text], where [Formula: see text], for each [Formula: see text]. The smallest cardinality of a double hop dominating set of [Formula: see text], denoted by [Formula: see text], is the double hop domination number of [Formula: see text]. In this paper, we investigate the concept of double hop dominating sets and study it for graphs resulting from some binary operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.