Labor absenteeism is a factor that affects the good performance of organizations in any part of the world, from the instability that is generated in the functioning of the system. This is evident in the effects on quality, productivity, reaction time, among other aspects. The direct causes by which it occurs are generally known and with greater reinforcement the diseases are located, without distinguishing possible classifications. However, behind these or other causes can be found other possible factors of incidence, such as age or sex. This research seeks to explore, through the application of neural networks, the possible relationship between different variables and their incidence in the levels of absenteeism. To this end, a neural networks model is constructed from the use of a population of more than 12,000 employees, representative of various classification categories. The study allowed the characterization of the influence of the different variables studied, supported in addition to the performance of an ANOVA analysis that allowed to corroborate and clarify the results of the neural network analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.