There are different methods for detecting digital faults in electronic and computer systems. But for analog faults, there are some problems. This kind of faults consist of many different and parametric faults, which can not be detected by digital fault detection methods. One of the proposed methods for analog fault detection, is neural networks. Fault detection is actually a pattern recognition task. Faulty and fault free data are different patterns which must be recognized. In this paper we use a probabilistic neural network for fault detection in MEMS. A fuzzy system is used to improve performance of the network. Finally different network results are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.