An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
Cardiac disease remains a major cause of morbidity and mortality in pregnant and post-partum women, although progress has been made, with specialist joint obstetric–cardiology clinics providing an integrated, safe and personalised service to these women. As a result, fewer non-specialist cardiologists are managing women in pregnancy with cardiovascular disease. The aim of this review is to provide a brief overview of current knowledge and practice in the field, with an emphasis on the major physiological changes which occur during pregnancy, focussing on progress through the trimesters, clinical assessment in pregnancy, management of delivery (concentrating on managed vaginal delivery), drug treatment, key conditions and risk assessment. The latter factor is particularly important in terms of being able to identify high-risk women earlier and to counsel them appropriately. Pregnant women with cardiovascular conditions can, with appropriate knowledge and counselling, be managed safely in specialist multidisciplinary services, but there is a need for cardiologists to understand the key changes and risks involved in pregnancy, delivery and the post-partum period.
We introduce a universal figure of merit to evaluate the processing speed (operation bandwidth) performance of arbitrary-order optical differentiators. In particular, we define the maximum-to-minimum bandwidth ratio (MMBR) as a main figure of merit of these devices, which essentially informs about the broadness of the acceptable input pulse bandwidth range. We derive and numerically confirm a general analytical expression for the MMBR of an arbitrary optical differentiator, showing that this can be expressed simply as a function of the differentiator's amplitude resonance depth. The device MMBR can be improved by increasing the filter's resonance depth, depending also on the differentiation order; in particular, the MMBR quickly deteriorates as the differentiator order is increased. In our analysis, photonic differentiators are considered in two main groups, namely (i) non-minimum phase and (ii) minimum phase optical filtering implementations. The derived analytical expression for the device MMBR is generalized for these two different solutions, and the validity of the obtained analytical estimates is verified through numerical simulations, including results for the cases of 1st-, 2nd-, and 3rd-order differentiators.
Real-time and single-shot ultra-fast photonic time-intensity integration of arbitrary temporal waveforms is proposed and demonstrated. The intensity-integration concept is based on a time-spectrum convolution system, where the use of a multi-wavelength laser with a flat envelope, employed as the incoherent broadband source, enables single-shot operation. The experimental implementation is based on optical intensity modulation of the multi-wavelength laser with the input waveform, followed by linear dispersion. In particular, photonic temporal intensity integration with a processing bandwidth of 36.8 GHz over an integration time window of 1.24 ns is verified by experimentally measuring the integration of an ultra-short microwave pulse and an arbitrary microwave waveform.
Background. We present the case of a 35-year-old gentleman who presented with an aggressive cardiomyopathy with normal coronary arteries. He was later diagnosed with systemic lupus-related cardiomyopathy. Methods. We undertook an extensive review of the literature regarding cardiac manifestations of lupus and used over 100 journals to identify the key points in pathology, diagnosis, and treatment. Results. We have shown that cardiac lupus can be rapidly progressive and, unless treated early, can have severe consequences. The predominant pathologies are immune complex and accelerated atherosclerosis drive. Treatment comprised of high-level immunosuppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.