Differential evolution (DE) is one simple and effective evolutionary algorithm (EA) for global optimization. In this paper, three modified versions of the DE to improve its performance, to repair its defect in accurate converging to individual optimal point and to compensate the limited amount of search moves of original DE are proposed. In the first modified version called bidirectional differential evolution (BDE), to generate a new trial point, is used from the bidirectional optimization concept, and in the second modified version called shuffled differential evolution (SDE), population such as shuffled frog leaping (SFL) algorithm is divided in to several memeplexes and each memeplex is improved by the DE algorithm. Finally, in the third modified version of DE called shuffled bidirectional differential evolution (SBDE) to improve each memeplex is used from the proposed BDE algorithm. Three proposed modified versions are applied on two types of DE and six obtained algorithms are compared with original DE and SFL algorithms. Experiments on continuous benchmark functions and non-parametric analysis of obtained results demonstrate that applying bidirectional concept only improves one type of the DE. But the SDE and the SBDE have a better success rate and higher solution precision than original DE and SFL, whereas those are more time consuming on some functions. In a later part of the comparative experiments, a comparison of the proposed algorithms with some modern DE and the other EAs reported in the literature confirms a better or at least comparable performance of our proposed algorithms.
The parameter identification problem can be modeled as a non-linear optimization problem. In this problem, some unknown parameters of a mathematical model presented by an ordinary differential equation using some experimental data must be estimated. This paper presents a shuffled frog leaping algorithm for solving parameter identification problem. An opposition-based initialization strategy is used to choose the fitter members as initial population. Two test cases are considered to examine the efficiency of utilized algorithm. The comparison results of shuffled frog leaping and other methods proposed in the different literature demonstrate that the shuffled frog leaping has a comparable performance than other evolutionary algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.