Various technological approaches have been developed in order to help those people who are unfortunate enough to be afflicted with different types of paralysis which limit them in performing their daily life activities independently. One of the proposed technologies is the Brain-Computer Interface (BCI). The BCI system uses electroencephalography (EEG) which is generated by the subject's mental activity as input, and converts it into commands. Some previous experiments have shown the capability of the BCI system to predict the movement intention before the actual movement is onset. Thus research has predicted the movement by discriminating between data in the "rest" condition, where there is no movement intention, with "pre-movement" condition, where movement intention is detected before actual movement occurs. This experiment, however, was done to analyze the system for which machine learning was applied to data obtained in a continuous time interval, between 3 seconds before the movement was detected until 1 second after the actual movement was onset. This experiment shows that the system can discriminate the "pre-movement" condition and "rest" condition by using the EEG signal in 7-30 Hz where the Mu and Beta rhythm can be discovered with an average True Positive Rate (TPR) value of 0.64 ± 0.11 and an average False Positive Rate (FPR) of 0.17 ± 0.08. This experiment also shows that by using EEG signals obtained nearing the movement onset, the system has higher TPR or a detection rate in predicting the movement intention. AbstrakAnalisis Prediksi Gerakan Tangan menggunakan Sinyal Elektroensefalografi. Berbagai pendekatan teknologi telah dikembangkan untuk membantu mereka yang menderita kelumpuhan dalam melakukan aktivitas kesehariannya secara mandiri. Salah satu teknologi tersebut adalah Brain-Computer Interface (BCI). Sistem BCI menggunakan elektroensefalografi (EEG) yang dihasilkan dari aktivitas mental seorang subjek sebagai masukan, dan mengubahnya menjadi perintah. Beberapa percobaan sebelumnya telah menunjukkan kemampuan sistem BCI untuk memprediksi gerakan sebelum gerakan tubuh aktual terjadi. Penelitian tersebut memprediksi gerakan yang akan terjadi dengan membedakan data pada kondisi rest, di mana tidak ada intensi gerakan, dengan kondisi pre-movement, di mana terdapat intensi gerakan sebelum gerakan aktual terjadi. Penelitian ini dilakukan untuk melakukan analisis sistem yang dihasilkan dari pembelajaran, yang kemudian diterapkan pada data dengan interval waktu kontinu, antara 3 detik sebelum gerakan terdeteksi sampai 1 detik setelah gerakan sebenarnya terjadi. Hasil percobaan menunjukkan bahwa sistem dapat membedakan kondisi premovement dan kondisi rest dengan menggunakan sinyal EEG pada frekuensi 7-30 Hz di mana letak Mu dan ritme Beta dengan nilai rerata true positive rate (TPR) sebesar 0.64 ± 0.11 dan rerata nilai false positive rate (FPR) sebesar 0.17 ± 0.08. Hasil percobaan juga mampu menunjukkan bahwa penggunaan sinyal EEG yang dekat dengan terjadinya gerakan, membuat sistem dapat mend...
This paper presents signal processing of single channel surface electromyography (sEMG) on bicep brachii and its alternative application on assistive technology. Mean Absolute Value (MA V) method is used to estimate the average of muscle's force which correlates with its sEMG voltage amplitude. As a result, this estimating value controls box in virtual world as biofeedback in three classes; rest condition, lifted arm without load, and lifted arm with load. From this point, bicep brachii's force value can be estimated by using its sEMG voltage amplitude in particular range.
This paper describes a novel method for controlling active prosthetics by integrating surface electromyography (sEMG) and electroencephalograph signals to improve its intuitiveness. This paper also compares the new method (RTA-2) with other existing methods (AND and OR) for controlling active prosthetics. Based on analysis, RTA-2 features higher true positive rate (TPR) and balanced accuracy (BA) than AND method. On the other hand, the new method (RTA-2) yields lower false detection rate (FPR) than OR method. Analysis also shows that RTA-2 possesses equal TPR, FPR, and BA with the detection of movement intention using sEMG-based system. Although the RTA-2 method shows equal performance with the sEMG-based system, it presents an advantage for driving active prosthetics to move faster and to reduce its total time response by generating more movement commands. Abstrak Hybrid Brain-Computer Interface: Metode Baru dalam Integrasi Sinyal EEG dan sEMG untuk Pengendalian Aktif Prosthetics. Paper ini menjelaskan metode baru untuk mengendalikan prosthetics aktif dengan mengintegrasikan sinyal elektromiograf (sEMG) dan elektroensefalograf (EEG) dalam rangka meningkatkan sifat intuitif yang dimilikinya. Selain itu, dalam paper ini juga membandingkan metode baru (RTA-2) dengan metode lain yang telah ada (AND dan OR) untuk mengendilikan prosthetics aktif. Berdasarkan analisis, metode RTA-2 memiliki nilai True Positive Rate (TPR) dan Balanced Accuracy (BA) lebih tinggi dibandingkan metode AND. Selain hal terebut, metode RTA-2 memilki kesalahan deteksi (FPR) yang lebih rendah dibandingkan metode OR. Berdasarkan analasis, nilai TPR, FPR dan BA yang dimiliki metode RTA-2 ini sama dengan akurasi deteksi intensi gerakan berbasis sinyal sEMG. Namun demikian, meskipun TPR, FPR dan BA dari metode RTA-2 sama dengan metode yang hanya berbasis sinyal sEMG, metode RTA-2 memiliki keunggulan dalam mengendalikan prosthetic aktif sehingga dapat bergerak dengan kecepatan lebih cepat dari sebelumnya dan mengurangi total waktu responnya dengan cara menghasilkan perintah keluaran kecepatan gerakan yang lebih banyak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.