Normal human breathing exhibits complex variability in both respiratory rhythm and volume. Analyzing such nonlinear fluctuations may provide clinically relevant information in patients with complex illnesses such as asthma. We compared the cycle-by-cycle fluctuations of inter-breath interval (IBI) and lung volume (LV) among healthy volunteers and patients with various types of asthma. Continuous respiratory datasets were collected from forty age-matched men including 10 healthy volunteers, 10 patients with controlled atopic asthma, 10 patients with uncontrolled atopic asthma, and 10 patients with uncontrolled non-atopic asthma during 60 min spontaneous breathing. Complexity of breathing pattern was quantified by calculating detrended fluctuation analysis, largest Lyapunov exponents, sample entropy, and cross-sample entropy. The IBI as well as LV fluctuations showed decreased long-range correlation, increased regularity and reduced sensitivity to initial conditions in patients with asthma, particularly in uncontrolled state. Our results also showed a strong synchronization between the IBI and LV in patients with uncontrolled asthma. Receiver operating characteristic (ROC) curve analysis showed that nonlinear analysis of breathing pattern has a diagnostic value in asthma and can be used in differentiating uncontrolled from controlled and non-atopic from atopic asthma. We suggest that complexity analysis of breathing dynamics may represent a novel physiologic marker to facilitate diagnosis and management of patients with asthma. However, future studies are needed to increase the validity of the study and to improve these novel methods for better patient management.
Optical coherence tomography (OCT) represents a non-invasive, high-resolution cross-sectional imaging modality. Macular edema is the swelling of the macular region. Segmentation of fluid or cyst regions in OCT images is essential, to provide useful information for clinicians and prevent visual impairment. However, manual segmentation of fluid regions is a time-consuming and subjective procedure. Traditional and off-the-shelf deep learning methods fail to extract the exact location of the boundaries under complicated conditions, such as with high noise levels and blurred edges. Therefore, developing a tailored automatic image segmentation method that exhibits good numerical and visual performance is essential for clinical application. The dual-tree complex wavelet transform (DTCWT) can extract rich information from different orientations of image boundaries and extract details that improve OCT fluid semantic segmentation results in difficult conditions. This paper presents a comparative study of using DTCWT subbands in the segmentation of fluids. To the best of our knowledge, no previous studies have focused on the various combinations of wavelet transforms and the role of each subband in OCT cyst segmentation. In this paper, we propose a semantic segmentation composite architecture based on a novel U-net and information from DTCWT subbands. We compare different combination schemes, to take advantage of hidden information in the subbands, and demonstrate the performance of the methods under original and noise-added conditions. Dice score, Jaccard index, and qualitative results are used to assess the performance of the subbands. The combination of subbands yielded high Dice and Jaccard values, outperforming the other methods, especially in the presence of a high level of noise.
The retina is a thin, light-sensitive membrane with a multilayered structure found in the back of the eyeball. There are many types of retinal disorders. The two most prevalent retinal illnesses are Age-Related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). Optical Coherence Tomography (OCT) is a vital retinal imaging technology. X-lets (such as curvelet, DTCWT, contourlet, etc.) have several benefits in image processing and analysis. They can capture both local and non-local features of an image simultaneously. The aim of this paper is to propose an optimal deep learning architecture based on sparse basis functions for the automated segmentation of cystic areas in OCT images. Different X-let transforms were used to produce different network inputs, including curvelet, Dual-Tree Complex Wavelet Transform (DTCWT), circlet, and contourlet. Additionally, three different combinations of these transforms are suggested to achieve more accurate segmentation results. Various metrics, including Dice coefficient, sensitivity, false positive ratio, Jaccard index, and qualitative results, were evaluated to find the optimal networks and combinations of the X-let’s sub-bands. The proposed network was tested on both original and noisy datasets. The results show the following facts: (1) contourlet achieves the optimal results between different combinations; (2) the five-channel decomposition using high-pass sub-bands of contourlet transform achieves the best performance; and (3) the five-channel decomposition using high-pass sub-bands formations out-performs the state-of-the-art methods, especially in the noisy dataset. The proposed method has the potential to improve the accuracy and speed of the segmentation process in clinical settings, facilitating the diagnosis and treatment of retinal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.