Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome. We identified previously unknown satellite arrays, expanded the catalog of variants and families for repeats and mobile elements, characterized classes of complex composite repeats, and located retroelement transduction events. We detected nascent transcription and delineated CpG methylation profiles to define the structure of transcriptionally active retroelements in humans, including those in centromeres. These data expand our insight into the diversity, distribution, and evolution of repetitive regions that have shaped the human genome.
The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure including long palindromes, tandem repeats, and segmental duplications. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029 base pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, revealing the complete ampliconic structures of TSPY, DAZ, and RBMY; 42 additional protein-coding genes, mostly from the TSPY gene family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a prior assembly of the CHM13 genome and mapped available population variation, clinical variants, and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.
Mobile elements and highly repetitive genomic regions are potent sources of lineage-specific genomic innovation and fingerprint individual genomes. Comprehensive analyses of large, composite or arrayed repeat elements and those found in more complex regions of the genome require a complete, linear genome assembly. Here we present the first de novo repeat discovery and annotation of a complete human reference genome, T2T-CHM13v1.0. We identified novel satellite arrays, expanded the catalog of variants and families for known repeats and mobile elements, characterized new classes of complex, composite repeats, and provided comprehensive annotations of retroelement transduction events. Utilizing PRO-seq to detect nascent transcription and nanopore sequencing to delineate CpG methylation profiles, we defined the structure of transcriptionally active retroelements in humans, including for the first time those found in centromeres. Together, these data provide expanded insight into the diversity, distribution and evolution of repetitive regions that have shaped the human genome.
The harvester ant genus Pogonomyrmex is endemic to arid and semiarid habitats and deserts of North and South America. The California harvester ant Pogonomyrmex californicus is the most widely distributed Pogonomyrmex species in North America. Pogonomyrmex californicus colonies are usually monogynous, i.e. a colony has one queen. However, in a few populations in California, primary polygyny evolved, i.e. several queens cooperate in colony founding after their mating flights and continue to coexist in mature colonies. Here, we present a genome assembly and annotation of P. californicus. The size of the assembly is 241 Mb, which is in agreement with the previously estimated genome size. We were able to annotate 17,889 genes in total, including 15,688 protein-coding ones with BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness at a 95% level. The presented P. californicus genome assembly will pave the way for investigations of the genomic underpinnings of social polymorphism in the number of queens, regulation of aggression, and the evolution of adaptations to dry habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.