The purpose of this research is determining experimentally the characteristics of tension and cyclic plastic behaviours of as‐received and annealed coppers and studying distribution of stress/strain field near the crack tip. Samples made by pure copper were annealed at 420°C for 40 minutes in electric furnace. To determine the properties of the cyclic plastic behaviour, proper tests with symmetric strain‐controlled conditions were performed on standard samples. Chaboche nonlinear hardening model was used to determine the cyclic plastic behaviour of both materials. According to results, annealing process creates isotropic hardening in the copper and also changes its initial kinematic hardening behaviour. Effects of the annealing and hardening on the variations of the stresses and strains around the crack tip were investigated. Also, ratcheting and mean stress relaxations versus number of cycles, inside the plastic region, were studied.
For many materials, plastic deformations under cyclic loadings differ from monotonic loading. Cyclic plastic zone with considering the strain hardening effects becomes complicated during unloading step. In this research, the effects of nonlinear kinematic and isotropic hardening behaviours on the cyclic plastic reaction around the crack tip for different conditions are investigated. For study of various hardening characteristics, as-received and annealed copper are tested under same symmetric cyclic loadings. The results indicate considerable isotropic hardening behaviour in annealed material. A Chaboche nonlinear hardening model was used to determine the hardening parameters. The cyclic plastic zone around the crack tip in C(T) specimen was measured by back stresses. The cyclic plastic zones are specified via variations of the back stresses in a cycle. The cyclic plastic zones predicted by Chaboche model are smaller than those for Irwin model because of the hardening effects. Also, Irwin model for prediction of the cyclic plastic zone size is modified with considering the cyclic plastic effects. According to the results, the cyclic plastic zone around the crack tip is almost constant in the same load range, and load ratio (R) has a slight effect on this zone. Whereas, for constant load range, cyclic J-integral (ΔJ) is different for various R values. For studying of the fatigue crack growth, two parameters of ΔJ and cyclic plastic zone area were evaluated. These parameters can apply in fracture mechanics especially in elastic-plastic conditions with considering the cyclic plastic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.