Salinity tolerance in rice is critical at reproductive stage because it ultimately determines grain yield. An F2 mapping population derived from a Sadri/FL478 cross was exposed to saline field conditions (6-8 dS m(-1)) after the active tillering stage to identify reproductive stage specific QTLs for salinity tolerance. Genetic linkage map was constructed using 123 microsatellite markers on 232 F2 progenies. Totally 35 QTLs for 11 traits under salinity stress were detected with LOD > 3, out of which 28 QTLs that explained from 5.9 to 30.0% phenotypic variation were found to be significant based on permutation test. Three major QTL clusters were found on chromosomes 2 (RM423-RM174), 4 (RM551-RM518) and 6 (RM20224-RM528) for multiple traits under salinity stress. Both parental lines contributed additively for QTLs identified for the yield components. A majority of the QTLs detected in our study are reported for the first time for reproductive stage salinity stress. Fine-mapping of selected putative QTLs will be the next step to facilitate marker-assisted backcrossing and to detect useful genes for salinity tolerance at the reproductive stage in rice.
Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.
Successful production and development of stable and adaptable cultivars only depend on the positive results achieved from the interaction between genotype and environment that consequently has significant effect on breeding strategies. The objectives of this study were to evaluate genotype by environment interactions for grain yield in barley advanced lines and to determine their stability and general adaptability. For these purposes, 18 advanced lines along with two local cultivars were evaluated at five locations (Gachsaran, Lorestan, Ilam, Moghan and Gonbad) during three consecutive years (2012)(2013)(2014)(2015). The results of the AMMI analysis indicated that main effects due to genotype (G), environment (E) and GE interaction as well as four interaction principal component axes were significant, representing differential responses of the lines to the environments and the need for stability analysis. According to AMMI stability parameters, lines G5 and G7 were the most stable lines across environments. Biplot analysis determined two barley mega-environments in Iran. The first mega-environment contained of Ilam and Gonbad locations, where the recommended G13, G19 and G1 produced the highest yields. The second mega-environment comprised of Lorestan, Gachsarn and Moghan locations, where G2, G9, G5 and G7 were the best adapted lines. Our results revealed that lines G5, G7, G9 and G17 are suggested for further inclusion in the breeding program due to its high grain yield, and among them G5 recommended as the most stable lines for variable semi-warm and warm environments. In addition, our results indicated the efficiency of AMMI and GGE biplot techniques for selecting genotypes that are stable, high yielding, and responsive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.