A novel class of mechanism-based inhibitors of the serine proteases is developed using epitaxial selection. Tripeptide boronates esterified by an alcohol or alcohols at the boron retain the tight binding to trypsin-like enzymes associated with transition-state analogs and incorporate additional groups that can be utilized for selectivity between proteases. Formed by reaction of a series of alcohols with the inhibitor boronate oxygen(s), the most structurally compatible alcohol-derivatized inhibitors are either selected by binding to the enzyme (epitaxial selection) or assembled by epitaxial reaction on the enzyme surface. Mass spectrometry of the derivatized boronates and X-ray crystallography of the complexes identify the chemical structures and the three-dimensional interactions of inhibitors generated. This scheme also engineers novel, potent (Ki approximately 7 nM), and more specific inhibitors of individual serine proteases, by derivitizations of compounds obtained by epitaxial selection.
In search of novel angiostimulators, we performed a high-throughput screening of medicinal plants beneficial for blood circulation. From the panel of positive hits, Angelica sinensis was selected for further investigation. Purified down to a low-molecular-weight fraction and characterized by high-performance liquid chromatography-mass spectrometry, the material, named SBD.4A, revealed a particularly strong wound healing activity in the diabetic mouse wound-healing model, and in the human/severe combined immunodeficiency mouse chimera wound-healing model. In both models, SBD.4A compared favorably with the Food and Drug Administration-approved wound-healing drug becaplermin, suggesting that this botanical product could be a valuable treatment for difficult-to-heal wounds. Further high-performance liquid chromatography fractionation of SBD.4A yielded a hydrophilic fraction, which strongly stimulated endothelial cell proliferation, tridimensional endothelial cell network formation, as well as the proliferation of human dermal fibroblasts and type I collagen secretion. Because angiogenesis and fibroblast proliferation are essential for wound healing, we propose that this liquid chromatography-mass spectrometry-defined hydrophilic fraction is at least partially responsible for the wound-healing activity of SBD.4A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.