Advanced A-TIG method was conducted to increase the weld penetration and compared with the conventional TIG welding process. A two-pipeline setup was designed to apply Ar ? CO 2 mixed gas as the outer layer, while pure argon was applied as the inner layer to prevent any consumption of the tungsten electrode. The results indicate that the presence of active gas in the molten pool led to the change in the temperature coefficient of surface tension so that the Marangoni convection turns inward and forms a deep weld zone. The increase in gas flow rate causes a decrease in the weld efficiency which is attributed to the increase in oxygen content in the weld pool and the formation of a thicker oxide layer on the weld surface. Moreover, the stir and the temperature fluctuation, led by double shielding gas, create more homogeneous nucleation sites in the molten pool so that a fine grain microstructure was obtained.
One of the most important problems that the drilling industry faces is drilling cost. Many factors affect the cost of drilling. Increasing drilling time has a significant role in increasing drilling costs. One of the solutions to reduce drilling time is to optimize the drilling rate. Drilling wells at the optimum time will reduce the time and thus reduce the cost of drilling. The drilling rate depends on different factors, some of which are controllable and some are uncontrollable. In this study, several smart models and a correlation were proposed to predict the rate of penetration (ROP) which is very important for planning a drilling operation. 5040 real data points from a field in the South of Iran have been used. The ROP was modelled using Radial Basis Function, Decision Tree (DT), Least Square Vector Machine (LSSVM), and Multilayer Perceptron (MLP). Bayesian Regularization Algorithm (BRA), Scaled Conjugate Gradient Algorithm and Levenberg–Marquardt Algorithm were employed to train MLP and Gradient Boosting (GB) was used for DT. To evaluate the accuracy of the developed models, both graphical and statistical techniques were used. The results showed that DT-GB model with an R2 of 0.977, has the best performance, followed by LSSVM and MLP-BRA with R2 of 0.971 and 0.969, respectively. Aside from that, the proposed empirical correlation has an acceptable accuracy in spite of simplicity. Moreover, sensitivity analysis illustrated that depth and pump pressure have the highest effects on ROP. In addition, the leverage approach approved that the developed DT-GB model is valid statistically and about 1% of the data are suspected or out of the applicability domain of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.