Scheduling of scientific workflows on hybrid cloud architecture, which contains private and public clouds, is a challenging task because schedulers should be aware of task inter-dependencies, underlying heterogeneity, cost diversity, and virtual machine (VM) variable configurations during the scheduling process. On the one side, reaching a minimum total execution time or makespan is a favorable issue for users whereas the cost of utilizing quicker VMs may lead to conflict with their budget on the other side. Existing works in the literature scarcely consider VM’s monetary cost in the scheduling process but mainly focus on makespan. Therefore, in this paper, the problem of scientific workflow scheduling running on hybrid cloud architecture is formulated to a bi-objective optimization problem with makespan and monetary cost minimization viewpoint. To address this combinatorial discrete problem, this paper presents a hybrid bi-objective optimization based on simulated annealing and task duplication algorithms (BOSA-TDA) that exploits two important heuristics heterogeneous earliest finish time (HEFT) and duplication techniques to improve canonical SA. The extensive simulation results reported of running different well-known scientific workflows such as LIGO, SIPHT, Cybershake, Montage, and Epigenomics demonstrate that proposed BOSA-TDA has the amount of 12.5%, 14.5%, 17%, 13.5%, and 18.5% average improvement against other existing approaches in terms of makespan, monetary cost, speed up, SLR, and efficiency metrics, respectively.
Purpose
Improvement of workflow scheduling in distributed engineering systems
Design/methodology/approach
The authors proposed a hybrid meta heuristic optimization algorithm.
Findings
The authors have made improvement in hybrid approach by exploiting of genetic algorithm and simulated annealing plus points.
Originality/value
To the best of the authors’ knowledge, this paper presents a novel theorem and novel hybrid approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.