In this article, we propose several goodness-of-fit methods for location-scale families of distributions under progressively Type-II censored data. The new tests are based on order statistics and sample spacings. We assess the performance of the proposed tests for the normal and Gumbel models against several alternatives by means of Monte Carlo simulations. It has been observed that the proposed tests are quite powerful in comparison with an existing goodness-of-fit test proposed for progressively Type-II censored data by Balakrishnan et al. [Goodness-of-fit tests based on spacings for progressively Type-II censored data from a general location-scale distribution, IEEE Trans. Reliab. 53 (2004), pp. 349-356]. Finally, we illustrate the proposed goodness-of-fit tests using two real data from reliability literature.
Generalized exponential, geometric extreme exponential and Weibull distributions are three non-negative skewed distributions that are suitable for analysing lifetime data. We present diagnostic tools based on the likelihood ratio test (LRT) and the minimum Kolmogorov distance (KD) method to discriminate between these models. Probability of correct selection has been calculated for each model and for several combinations of shape parameters and sample sizes using Monte Carlo simulation. Application of LRT and KD discrimination methods to some real data sets has also been studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.