We have explored a new technology based on chemically induced phase separation that yields porous epoxies and cyanurates with a closed cell morphology and micrometer sized pores with a narrow pore size distribution. When the precursor monomers are cured in the presence of a low molecular weight liquid, the desired morphology results from a phase separation and a chemical quench. After phase separation, the porosity is achieved by thermal removal of the secondary liquid phase, specifically by diffusion through the crosslinked matrix. In respect to the thermodynamics and kinetics, the origin of the phase separation process can be identified as nucleation and growth. The influence of internal and external reaction parameters, such as chemical nature of the low molecular weight liquid, its concentration and the curing temperature on the final morphology are presented. Thus, the morphology can be controlled ranging from a monomodal to bimodal pore size distribution with pore sizes inbetween 1 to 10 μm. These porous thermosets are characterized by a significantly lower density, without any loss in thermal stability compared to the neat matrix. Such new materials demonstrate great interest for lowering the dielectric constant and for improving the fundamental understanding of the role of voids in stress relaxation and toughening.
Simultaneous axial and radial epitaxies can be achieved by growing ZnO microtowers by repeating a growth cycle several times, report Zhengwei Pan and co‐workers . The as‐grown ZnO microtowers display a preferential growth habit of hexagonal prism–dihexagonal pyramid. Some rare or new growth habits such as dihexagonal prism–dihexagonal pyramid, hexagonal prism–trihexagonal pyramid and dihexagonal prism–trihexagonal pyramid (as shown on the cover) have also been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.