Abstract. This paper considers a generalized form for Hessian curves. The family of generalized Hessian curves covers more isomorphism classes of elliptic curves. Over a finite field Fq, it is shown to be equivalent to the family of elliptic curves with a torsion subgroup isomorphic to Z/3Z.This paper provides efficient unified addition formulas for generalized Hessian curves. The formulas even feature completeness for suitably chosen parameters. This paper also presents extremely fast addition formulas for generalized binary Hessian curves. The fastest projective addition formulas require 9M + 3S, where M is the cost of a field multiplication and S is the cost of a field squaring. Moreover, very fast differential addition and doubling formulas are provided that need only 5M + 4S when the curve is chosen with small curve parameters.
Following Kraitchik and Lehmer, we say that a positive integer n ≡ 1 (mod 8) is an x-pseudosquare if it is a quadratic residue for each odd prime p ≤ x, yet it is not a square. We extend this definition to algebraic curves and say that n is an x-pseudopoint of a curve defined by f (U, V ) = 0 (where f ∈ Z[U, V ]) if for all sufficiently large primes p ≤ x the congruence f (n, m) ≡ 0 (mod p) is satisfied for some m. We use the Bombieri bound of exponential sums along a curve to estimate the smallest x-pseudopoint, which shows the limitations of the modular approach to searching for points on curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.