BackgroundHuman cancer cells resemble stem cells in expression signatures leading them to share some features, most notably, self-renewal. A complex network of transcription factors and signaling molecules are required for continuance of this trait. SALL4 is a zinc finger transcriptional activator crucial for maintenance of self-renewal in stem cells; however, its expression level has not yet been elucidated in colorectal tumor cells. To determine this level and probable clinicopathological consequences, its expression was analyzed.MethodsSALL4 expression in fresh tumoral and distant tumor-free tissues from 46 colorectal samples was compared by real-time polymerase chain reaction (PCR).ResultsGreater than a two-fold increase in SALL4 expression was detected in 87% of tumors vs. normal related tissues. SALL4 expression was significantly correlated with tumor cell metastasis to lymph nodes, especially in moderately-differentiated tumor samples (P < 0.05). Furthermore, higher levels of SALL4 mRNA expression were significantly associated with younger than older patients with tumor cells in stages I and II (P < 0.05).ConclusionsThese results indicate a relationship between SALL4 expression and tumor cell metastasis to lymph nodes and consequent advancement of tumors to advanced stages III and IV. Along with the promising evidence of its role in self-renewal in various cancers, SALL4 may have a role in progression, development and maintenance of colorectal cancers.
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, participate in intercellular communication, and particularly, in paracrine and endocrine signalling. The EVs and their specific contents have been considered hallmarks of different diseases. It has been recently discovered that EVs can co-transport nucleic acids such as DNAs, ribosomal RNAs, circular RNAs (circRNAs), long noncoding RNAs (lnRNAs) and microRNAs (miRNAs). miRNAs are important regulators of gene expression at the post-transcriptional level, although they may also play other roles. Recent evidence supports the hypothesis that miRNAs can activate Toll-like receptors (TLRs) under certain circumstances. TLRs belong to a multigene family of immune system receptors and have been recently described in the nervous system. In the immune system, TLRs are important for the recognition of the invading microorganisms, whereas in the nervous system, they recognise endogenous ligands released by undifferentiated or necrotic/injured cells. In the neuronal disease field, TLRs activity has been associated with amyotrophic lateral sclerosis (ALS), stroke, Alzheimer's and Parkinson's disease. Herein, we reviewed the current knowledge of the relationship between miRNA release by EVs and the inflammation signalling triggered by TLRs in neighbouring cells or during long-distance cell-to-cell communication. We highlight novel aspects of this communication mechanism, offering a valuable insight into such pathways in health and disease.
We introduce Twist1 and MAML1 as new molecular markers of advanced tumor, which determine the characteristics and aggressive behavior of ESCC. Along with the emerging evidence of their role in different cellular processes and aberrations in various cancers, they are suggested as potentially interesting therapeutic targets to reverse a broad spectrum of functional aberrations that promote ESCC development.
Early detection of CRC is directly correlated to improved outcomes, increased survival rates and reduced mortality. Our results can introduce SALL4 as a critical biomarker for efficient screening of patients to detect early stages of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.