A mathematical model based on the continuum mechanic concept has been developed to describe the profile of solid particles in an industrial scale blast furnace with respect to the in-furnace conditions and its characteristics such as the shape and size of the deadman. The Navier-Stokes differential equation for multi-phase multi-dimensional space has been used to describe the behavior of existing phases. The surface stress tensor has been defined as an extra term and added to the Navier-Stokes equation to describe the particle-particle interactions. This extra term in the Navier-Stokes equation behave as a breaking force when the particles are sliding down. It is shown that the particles change their profile from a V-shape to a W-shape due to the characteristics of the deadman. Moreover, the velocity magnitude is higher at the outer surface of the deadman for higher grid-slabs in this region than the near-wall cells. However, the situation changes as solid particles moving to even lower level of grid-slabs at the outer surface of the deadman in comparison to near-wall cells. It has also been shown that an increase in the magnitude of the effective pressure reduces the velocity magnitude of descending particles.
The steel industry, in accordance with the momentum of greener industry, has welcomed the changes and is actively pursuing that objective. One such activity is the commitment to energy recovery from by-products such as slag since the average energy content of ferrous slags is around 1 to 2 GJ/tslag. The recovered energy could, then, be used in heating or drying process among others. The RecHeat was designed and modelled iteratively to achieve an optimised heat recovery apparatus. The model shows that the temperature of different sections of the heat exchanger part varies from 170 to 380 °C after slag pouring while the average air temperature at the entrance of the heat exchanger is less than 150 °C. Furthermore, the temperature of the fluid medium changes from 125–140 °C to 260–340 from one end of the heat exchanger part to the other at the end of the simulation. The outlet temperature at the end of the simulation is calculated to be around 340 °C, which shows an increase by at least 200 °C in the temperature of the air entering the apparatus.
A mathematical model based on the continuum mechanic concept has been developed to describe the profile of solid particles in a blast furnace with respect to the in-furnace conditions and characteristics, e.g., the shape and size of the deadman. The Navier-Stokes differential equation for multi-phase multi-dimensional space has been used to describe the behavior of existing phases. The equation has been modified to make it possible to describe the dual nature of the solid phase in the system by applying the concept of the solid surface stress to characterize the inter-granular surface interactions between particles. Since different phases co-exist in a blast furnace, the volume fraction plays an important role in a blast furnace. Therefore, the influence of three different packing densities (0.68, 0.71, and 0.74, respectively) on the profile of the flow in the upper part of a furnace down to the tuyeres level has been studied. It is shown that an increase in the volume fraction of the solid phase lead to a decrease in magnitude of the velocity. The decrease in the magnitude of the velocity due to an increase in the solid volume fraction will increase the resident time of the particles inside a blast furnace. In addition, it is shown that the solid phase velocity magnitude decreases from the throat to the belly of the furnace for the studied conditions. However, after belly the velocity magnitude increases.
A novel horizontal stirring has been introduced to investigate the effect of such a stirring on the ladle profile during the combined stirring process at the refining stage. The multiphaseInterFoam solver has been updated to consider the induction forces imposed on the liquid bath by the magnetic stirrer.During the combined stirring stage, the gas plume is affected by the rotational movement. The gas plume seems to be intact in the lower one-third of the domain, then breaks into clusters in the upper section while the rotational movement of clusters dissipates a large portion of upward momentum of the bubbles. This prevents large openings in the slag layer and respectively, prevents the exposure of steel. It also disperses the bubbles to various sections of the ladle. Hence, such a novel stirring strategy seems to have the potential of improving the cleanness of the liquid steel during the ladle refining process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.