Supplementary cementitious materials Thixotropy Breakdown Drop in apparent viscosity Yield value at rest a b s t r a c tIn this study, thixotropy and structural breakdown of 57 self-consolidating concrete (SCC) mixtures containing various supplementary cementitious materials (SCM) were investigated by different approaches. The effects of SCM type and content on high range water reducer demand and plastic viscosity were also studied. For these purposes, various amounts of silica fume (SF), metakaolin (MK), Class F fly ash (FAF), Class C fly ash (FAC) and granulated blast-furnace slag (BFS) were utilized in binary, ternary, and quaternary cementitious blends in three water/binder (w/b) ratios. Results showed that except BFS, use of SCM in SCC mixtures increased thixotropy values in comparison with the mixtures containing only portland cement (PC). Good correlations were established between structural breakdown area and drop in apparent viscosity values for all w/b ratios. The different methods used to evaluate the thixotropy and structural breakdown got more consistent with each other as w/b decreased.
h i g h l i g h t sThe effect of binder type and content on the benefits of SCM in SCC was investigated. Metakaolin was able to increase the plastic viscosity of SCC by 90%. Silica fume and blast furnace slag reduced the plastic viscosity of SCC. Yield stress of the mixtures with SCM was higher than that of the control mixtures. a r t i c l e i n f o
b s t r a c tIn design of self-consolidating concrete (SCC) for a given application, the mixture's rheological parameters should be adjusted to achieve a given profile of yield stress and plastic viscosity. Supplementary cementitious materials (SCM) can be useful for this adjustment in addition to their other advantages. In this study, the rheological properties of 57 SCC mixtures with various SCM were investigated for a constant slump flow value. For this aim, various amounts of silica fume (SF), metakaolin (MK), Class F fly ash (FAF), Class C fly ash (FAC) and granulated blast-furnace slag (BFS) were utilized in binary, ternary, and quaternary cementitious blends in three water/binder ratios. Results showed that SF and BFS decreased plastic viscosity and V-funnel time values in comparison with mixtures containing only Portland cement (PC). However the opposite tendency was observed when MK, FAC and FAF were incorporated with PC. Substitution of PC with SF, MK and FAC increased high range water reducer (HRWR) demand in the SCC mixtures having constant slump flow. Use of SCM in SCC mixtures increased yield stress values. Good correlations were established between plastic viscosity and V-funnel flow time values for all w/b ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.