The purpose of this systematic review is to evaluate the use of implant-tooth-borne removable partial dentures in prosthetic rehabilitation of Kennedy Class I partially edentulous arches. A comprehensive search was performed in MEDLINE, EMBASE, Cochrane Oral Health Group's Trials Register, Cochrane Central Register of Controlled Trials, UK National Research Register, Australian New Zealand Clinical Trials Registry (ANZCTR), conference proceedings and abstracts up to 25 August 2009. Searching the reference list of the selected articles and hand searching of several journals were also performed. A total of nine studies were included. Of these, two were randomized, three were retrospective and four were case reports. All but two had a low reporting quality (level IV on a four-level hierarchy of evidence). Nevertheless, the improvement in function, aesthetics and stability has been demonstrated in all studies with minimal prosthetic care. Within the limitations of this study, implant-assisted/supported removable partial denture may provide a simple, economical and less invasive treatment modality. The predictability of such approach in the management of bilateral distal-extension situation is, however, still questionable. A higher quality of published studies namely with a focus on long-term randomized clinical trials are needed.
Holey 2D metal oxides have shown great promise as functional materials for energy storage and catalysts. Despite impressive performance, their processing is challenged by the requirement of templates plus capping agents or high temperatures; these materials also exhibit excessive thicknesses and low yields. The present work reports a metal‐based coordination polymer (MCP) strategy to synthesize polycrystalline, holey, metal oxide (MO) nanosheets with thicknesses as low as two‐unit cells. The process involves rapid exfoliation of bulk‐layered, MCPs (Ce‐, Ti‐, Zr‐based) into atomically thin MCPs at room temperature, followed by transformation into holey 2D MOs upon the removal of organic linkers in aqueous solution. Further, this work represents an extra step for decorating the holey nanosheets using precursors of transition metals to engineer their band alignments, establishing a route to optimize their photocatalysis. The work introduces a simple, high‐yield, room‐temperature, and template‐free approach to synthesize ultrathin holey nanosheets with high‐level functionalities.
Purpose. This in vitro study investigates how unilateral and bilateral occlusal loads are transferred to an implant assisted removable partial denture (IARPD). Materials and Methods. A duplicate model of a Kennedy class I edentulous mandibular arch was made and then a conventional removable partial denture (RPD) fabricated. Two Straumann implants were placed in the second molar region, and the prosthesis was modified to accommodate implant retained ball attachments. Strain gages were incorporated into the fitting surface of both the framework and acrylic to measure microstrain (μStrain). The IARPD was loaded to 120Ns unilaterally and bilaterally in three different loading positions. Statistical analysis was carried out using SPSS version 18.0 (SPSS, Inc., Chicago, IL, USA) with an alpha level of 0.05 to compare the maximum μStrain values of the different loading conditions. Results. During unilateral and bilateral loading the maximum μStrain was predominantly observed in a buccal direction. As the load was moved anteriorly the μStrain increased in the mesial area. Unilateral loading resulted in a twisting of the structure and generated a strain mismatch between the metal and acrylic surfaces. Conclusions. Unilateral loading created lateral and vertical displacement of the IARPD. The curvature of the dental arch resulted in a twisting action which intensified as the unilateral load was moved anteriorly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.