Although Ant-Miner has been used with relative ease for datasets with categorical data and small-sized feature vectors, microarray datasets, which contain a few samples with large amount of genes, are a totally different story. The Ant-Miner is an ant colony optimisation algorithm that extracts predictive rules from datasets and intrinsically works on discrete values. This study has developed a new algorithm, "Enhanced Ant-Miner" (EAM), based on previous works. EAM deals with continuous attributes as well as categorical ones and presents its captured models in the form of predictive rules. EAM has been tested versus SVM, CN2, K-means and hierarchical clustering and the results show that EAM is the best in the context of predictive accuracy. Additionally, its agent-based nature gives it a much more charming ability to speed up the whole process when compared to other trivial miners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.