The goal of this work is to detect the onset of material cross-contamination in laser powder bed fusion (L-PBF) additive manufacturing (AM) process using data from in situ sensors. Material cross-contamination refers to trace foreign materials that may be introduced in the powder feedstock used in the process due to reasons such as poor cleaning of the machine after previous builds or inadequate quality control during production and storage of the powder. Material cross-contamination may lead to deleterious changes in the microstructure of the AM part and consequently affect its functional properties. Accordingly, the objective of this work is to develop and apply a spectral graph theoretic approach to detect the occurrence of material cross-contamination in real-time as the part is being built using in-process sensors. The central hypothesis is that transforming the process signals in the spectral graph domain leads to early and more accurate detection of material cross-contamination in L-PBF compared to the traditional delay-embedded Bon-Jenkins stochastic time series analysis techniques, such as autoregressive (AR) and autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy 625 (UNS alloy 06625) test parts were made at Edison Welding Institute (EWI) on a custom-built L-PBF apparatus integrated with multiple sensors, including a silicon photodetector (with 300 nm to 1100 nm optical wavelength). During the process, two types of foreign contaminant materials, namely, tungsten and aluminum particulates, under varying degrees of severity were introduced. To detect cross-contamination in the part, the photodetector sensor signatures were monitored hatch-by-hatch in the form of spectral graph transform coefficients. These spectral graph coefficients are subsequently tracked on a Hotelling T2 statistical control chart. Instances of Type II statistical error, i.e., probability of failing to detect the onset of material cross-contamination, were verified against X-ray computed tomography (XCT) scans of the part to be within 5% in the case of aluminum contaminant particles. In contrast, traditional stochastic time series modeling approaches, e.g., ARMA, had corresponding Type II error exceeding 15%. Furthermore, the computation time for the spectral graph approach was found to be less than one millisecond, compared to nearly 100 ms for the traditional time series models tested.
Additive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide range of influencing factors, such as process parameters, material, environment, measurement, and operators training. Investigating the effects of not only the influential AM processes variables but also their interactions and coupled impacts are essential to process optimization which requires huge efforts to be made. Therefore, numerical simulation can be an effective tool that facilities the evaluation of the AM processes principles. Selective Laser Melting (SLM) is a widespread Powder Bed Fusion (PBF) AM process that due to its superior advantages, such as capability to print complex and highly customized components, which leads to an increasing attention paid by industries and academia. Temperature distribution and melt pool dynamics have paramount importance to be well simulated and correlated by part quality in terms of surface finish, induced residual stress and microstructure evolution during SLM. Summarizing numerical simulations of SLM in this survey is pointed out as one important research perspective as well as exploring the contribution of adopted approaches and practices. This review survey has been organized to give an overview of AM processes such as extrusion, photopolymerization, material jetting, laminated object manufacturing, and powder bed fusion. And in particular is targeted to discuss the conducted numerical simulation of SLM to illustrate a uniform picture of existing nonproprietary approaches to predict the heat transfer, melt pool behavior, microstructure and residual stresses analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.