Cases of monkeypox (MPV) are sharply rising around the world. While most efforts are being focused on the management of the first symptoms of monkeypox, such as cutaneous lesions and flu-like symptoms, the effect of the monkeypox virus (MPXV) on multiple organs still remains unclear. Recently, several neurological manifestations, such as headache, myalgia, malaise, fatigue, altered consciousness, agitation, anorexia, nausea, and vomiting, have been reported in patients with MPV. In addition, data from experimental studies have indicated that MPXV can gain access to the central nervous system (CNS) through the olfactory epithelium and infected circulatory monocytes/macrophages as two probable neuroinvasive mechanisms. Therefore, there are growing concerns about the long-term effect of MPXV on the CNS and subsequent neurological complications. This paper highlights the importance of the neuroinvasive potential of MPXV, coupled with neurological manifestations.
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
A growing number of studies indicate a broad range of neurological manifestations, including seizures, occur in patients with COVID‐19 infection. We report a 29‐year‐old female patient with status epilepticus and positive SARS‐CoV‐2 in the cerebrospinal fluid. Our findings support previous reports suggesting seizure as a possible symptom of COVID‐19 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.