Selective hydrogenation of phenol to cyclohexanol in the aqueous phase was achieved using a new catalytic system based on palladium particles supported on hydrophilic carbon prepared by one-pot hydrothermal carbonisation.
Spherically shaped carbon/silicon nanocomposites have been obtained in a one-step procedure using hydrothermal carbonization of glucose in the presence of commercially available silicon nanoparticles and have been tested electrochemically as an anode material for lithium-ion batteries.
A cherry stone-based activated carbon was electrochemically and chemically oxidized to enhance its adsorbent property for comparison with as-produced. The samples obtained were characterized by Boehm's titration, pH titration, zeta potential measurement, FT-IR, Brunauer-Emmet-Teller surface area, and pore size distribution. A significant increase in the concentration of surface functional groups was obtained from the oxidation of the samples due to the introduction of oxygencontaining functional groups, as confirmed by Boehm's titration, FT-IR, PZC, and IEP analyses. Activation methods significantly improved the amount of oxygen-containing surface functional groups that make the carbonaceous adsorbents more hydrophilic and acidic, decreasing the pH of their point of zero charge, and increasing their surface charge density. The activated carbon samples obtained were predominantly microporous, and their pore volumes decreased as a function of activation period and temperature. The surface chemistry development of carbons was correlated to increasing removal ability of heavy metals.
The nanoparticles are prepared by one-pot hydrothermal carbonization of furfural. The system catalyzes effectively the hydrogenation of phenol derivatives to cyclohexanols. -(MAKOWSKI, P.; CAKAN, R. D.; ANTONIETTI, M.; GOETTMANN, F.; TITIRICI*, M.-M.; Chem. Commun. (Cambridge) 2008, 8, 999-1001; MPI Kolloide Grenzflaechen, D-14424 Potsdam, Germany; Eng.) -M. Paetzel 28-045
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.