Halotrichite has been identified in geothermal fields of the Kambalny-Pauzhetka-Koshelev region, the Bolshoi Semiachik complex, and the Mutnovsky volcano (Kamchatka, Russia). Halotrichite forms efflorescence on soils heated up to 70°C, around steam-gas vents and boiling springs. Tschermigite, rozenite, szomolnokite, gypsum, alunogen, barite, melanterite, hexahydrite, and minerals of the copiapite, alunite and voltaite groups were found in close association with halotrichite. The chemical composition of halotrichite samples from different geothermal fields is similar and characterized by Mg substitution in the Fe2+ position, with Fe2+:Mg ratio ranging from 90:10 to 50:50, and also by Fe3+ substitution in the Al position in some samples, with Al:Fe3+ reaching up to 85:15. Halotrichite is a typical mineral of low-temperature volcanic setting, formed as a result of alteration of parent minerals by hydrothermal fluid and represents an intermediate form of crystallization of leached elements. At the same time, the local conditions of mineral formation — such as variations in Eh, pH, surface temperature, and elemental composition — do not reflect in the chemical composition or other thin typomorphic features of halotrichite. The mechanism of halotrichite formation is probably identical in both geothermal fields and zones of oxidation of sulfide deposits.
The crystal structure of a naturally occurring layered double hydroxide mineral—desautelsite from San Benito County, California, USA—was refined using single-crystal X-ray diffraction data in the space group R-3m, a = 3.1238(2) Å, c = 23.528(3) Å, V = 198.83(4) Å3, and Z = 3/8. The Mg and Mn cations are disordered occurring in one M site with occupancy Mg0.77Mn0.23. According to the electron microprobe analysis supported by Raman spectroscopy, the empirical formula is Mg6.20(MnIII1.78Al0.01FeIII0.01)Σ1.80(OH)16(CO3)0.90·5.35H2O that shows higher content of interlayer (H2O) molecules in comparison to the ideal formula that also agrees with the structure refinement. The Raman spectroscopy of two samples indicated O–H vibrations (3650/3640 cm−1, ~3500 sh cm−1), symmetric C–O (1055/1057 cm−1), Mg–O–Mg (533/533 cm−1) and Mn–O–Mn (439/438 cm−1) stretching vibrations and lattice vibrations (284/287 cm−1). Summing up our data and that of the current literature, we show a correlation (R2 = 0.91) between the averaged effective ionic radius (x) and a unit cell parameter (y) of hydrotalcite group minerals, y=1.9871x+1.4455. Desautelsite follows this correlation, being the species with one of the largest a unit cell parameters among the group. The correlation can be applied for control of cation intercalation during synthesis.
Alunogen, Al2(SO4)3·17H2O, occurs as an efflorescent in acid mine drainage, low-temperature fumarolic or pseudofumarolic (at coal fires) terrestrial environments. It is considered as one of the main Al-sulfates of Martian soils demanding comprehensive crystal chemical data of natural terrestrial samples. However, structural studies of natural alunogen were carried out in 1970s without localization of H atoms and have not previously been performed for samples from geothermal fields, despite the fact that these environments are considered as proxies of the Martian conditions. The studied alunogen sample comes from Verkhne-Koshelevsky geothermal field (Koshelev volcano, Kamchatka, Russia). Its chemical formula is somewhat dehydrated, Al2(SO4)3×15.8 H2O. The crystal structure was solved and refined to R1 = 0.068 based on 5112 unique observed reflections with I > 2σ(I). Alunogen crystalizes in P-1 space group, a = 7.4194(3), b = 26.9763(9), c = 6.0549(2) Å, α = 90.043(3), β = 97.703(3), γ = 91.673(3) °, V = 1200.41(7) Å3, Z = 2. The crystal structure consists of isolated SO4 tetrahedra, Al(H2O)6 octahedra and H2O molecules connected by hydrogen bonds. The structure refinement includes Al, S and O positions that are similar to previous structure determinations and thirty-four H positions localized for the natural sample first. The study also shows the absence of isomorphic substitutions in the composition of alunogen despite the iron-enriched environment of mineral crystallization. The variability of the alunogen crystal structure is reflected in the number of “zeolite” H2O molecules and their splitting. The structure complexity of alunogen and its modifications ranges from 333-346 bits/cell for models with non-localized H atoms to 783-828 bits/cell for models with localized H atoms. The higher values correspond to higher hydration state of alunogen.
Alunogen, Al2(SO4)3·17H2O, occurs as an efflorescent in acid mine drainage, low-temperature fumarolic or pseudofumarolic (such as with coal fires) terrestrial environments. It is considered to be one of the main Al-sulphates of Martian soils, demanding comprehensive crystal-chemical data of natural terrestrial samples. Structural studies of natural alunogen were carried out in the 1970s without localization of H atoms and have not been previously performed for samples from geothermal fields, despite the fact that these environments are considered to be proxies of the Martian conditions. The studied alunogen sample comes from Verkhne–Koshelevsky geothermal field (Koshelev volcano, Kamchatka, Russia). Its chemical formula is somewhat dehydrated, Al2(SO4)3·15.8H2O. The crystal structure was solved and refined to R1 = 0.068 based on 5112 unique observed reflections with I > 2σ(I). Alunogen crystalizes in the P-1 space group, a = 7.4194(3), b = 26.9763(9), c = 6.0549(2) Å, α = 90.043(3), β = 97.703(3), γ = 91.673(3) °, V = 1200.41(7) Å3, Z = 2. The crystal structure consists of isolated SO4 tetrahedra, Al(H2O)6 octahedra and H2O molecules connected by hydrogen bonds. The structure refinement includes Al, S and O positions that are similar to previous structure determinations and thirty-four H positions localized for the natural sample first. The study also shows the absence of isomorphic substitutions in the composition of alunogen despite the iron-enriched environment of mineral crystallization. The variability of the alunogen crystal structure is reflected in the number of the “zeolite” H2O molecules and their splitting. The structural complexity of alunogen and its modifications ranges from 333–346 bits/cell for models with non-localized H atoms to 783–828 bits/cell for models with localized H atoms. The higher values correspond to the higher hydration state of alunogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.