Due to its high activation efficiency, waterglass has been widely used for alkali activations in geopolymer. In this study, the n(SiO2)/n(Na2O) (Ms) of waterglass was selected as the variable to investigate the role of the silicate structure on the mechanical properties of harden pastes. Ms was changed by the addition of NaOH to obtain the different silicate group, structure and experiments were performed by employing the liquid-sate 29Si nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and gel permeation chromatography (GPC) techniques. Furthermore, selected dissolution, scanning electron microscope (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and FTIR experiments were used to measure the development of the amorphous gel and other materials with different curing condition. Results show that silicate structure of the waterglass was changed via the Si-ONa+ formation and the electric charge effect of Na+. Under the lower Ms waterglass, the Q0, Q1 and QC2 structure reverted to the main structure of the silicate group, which was kind of lower seize, molecule weight, linear or circular chain lower geopolymerization degree silicon structure. It would accelerate the geopolymerization speed of prepolymer formation. In addition, higher activity degree of Q0 and Q1 were useful to increase the formation amount of the gel structure with a low Si/Al ratio and size. Thus, silicate structure of waterglass controls the amorphous gel properties to adjust the compressive strength of alkali-activated materials.
Upward migration of gas-dissolved pore fluid is an important mechanism for many naturally occurring hydrate reservoirs. However, there is limited understanding in this scenario of hydrate formation in sediments. In this preliminary work, hydrate formation and accumulation from dissolved gas in sandy sediments along the migration direction of brine was investigated using a visual hydrate simulator. Visual observation was employed to capture the morphology of hydrates in pores through three sapphire tubes. Meanwhile, the resistivity evolution of sediments was detected to characterize hydrate distribution in sediments. It was observed that hydrates initially formed as a thin film or dispersed crystals and then became a turbid colloidal solution. With hydrate growth, the colloidal solution converted to massive solid hydrates. Electrical resistivity experienced a three-stage evolution process corresponding to the three observed hydrate morphologies. The results of resistivity analysis also indicated that the bottom–up direction of hydrate growth was consistent with the flow direction of brine, and two hydrate accumulation centers successively appeared in the sediments. Hydrates preferentially formed and accumulated in certain depths of the sediments, resulting in heterogeneous hydrate distribution. Even under low saturation, the occurrence of heterogeneous hydrates led to the sharp reduction of sediment permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.