Analog and mixed-signal (AMS) computer-aided design tools are of increasing interest owing to demand for the wide range of AMS circuit specifications in the modern system on a chip and faster time to market requirement. Traditionally, to accelerate the design process, the AMS system is decomposed into smaller components (called
modules
) such that the complexity and evaluation of each module are more manageable. However, this decomposition poses an interface problem, where the module’s input-output states deviate from when combined to construct the AMS system, and thus degrades the system expected performance. In this article, we develop a tool module-linking-graph assisted hybrid parameter search engine with neural networks (MOHSENN) to overcome these obstacles. We propose a module-linking-graph that enforces equality of the modules’ interfaces during the parameter search process and apply surrogate modeling of the AMS circuit via neural networks. Further, we propose a hybrid search consisting of a global optimization with fast neural network models and a local optimization with accurate SPICE models to expedite the parameter search process while maintaining the accuracy. To validate the effectiveness of the proposed approach, we apply MOHSENN to design a successive approximation register analog-to-digital converter in 65-nm CMOS technology. This demonstrated that the search time improves by a factor of 5 and 700 compared to conventional hierarchical and flat design approaches, respectively, with improved performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.