Understanding microscale physiology and microstructural cellular features of the brain is key to understanding mechanisms of neurodegenerative diseases and injury, as well as prominent changes undergone in development and aging. Non-invasive imaging modalities sensitive to the microscale, especially diffusion magnetic resonance imaging (dMRI), are promising for mapping of cellular microstructure of brain tissues; however, there is a need for robust validation techniques to verify and improve the biological accuracy of information derived. Recent advances in dMRI have moved toward probing of the more complex grey matter architecture, challenging current validation techniques, which are largely based on ex vivo staining and microscopy focusing on white matter. Polarized light imaging (PLI) has been shown to be successful for high resolution, direct, microstructural imaging and has been applied to dMRI validation with clear advantages over staining and microscopy techniques. Conventionally, PLI is applied to thin, sectioned samples in transmission mode, but PLI has also been extended to operate in reflectance mode to bridge the gap toward in vivo measurements of the brain. In this report we investigate the use of backscattering Mueller Matrix polarimetry to characterize the microstructural content of intact ferret brain specimens. The results show that backscattering polarimetry can probe white matter fiber coherence and fiber orientation, and show promise for probing grey matter microstructure. Ultimately, this motivates further study to fully understand how best to implement backscattering polarimetry for in vivo microstructural imaging of the brain.
Knowledge of fiber microstructure and orientation in the brain is critical for understanding the pathogenesis and progression of neurodegenerative diseases such as Alzheimer’s disease. Diffusion magnetic resonance imaging (dMRI) is a noninvasive imaging modality that can generate mappings of nerve fiber orientation. Due to rigorous levels of mathematical modeling involved in reconstructing dMRI data; and limited spatial resolution, there arises a need to validate the biological accuracy of collected dMRI data. Polarized light imaging (PLI) has been shown to have potential for microstructural validation due to the anisotropy in many biological tissues, particularly in myelin sheaths surrounding nerve fibers in the brain. Using PLI for this purpose is appealing because it is directly sensitive to tissue structure and can be done at high resolution. While several studies have had success using PLI for fiber mapping, continuing to advance this modality, particularly reflectance based PLI systems, could provide a valuable avenue for in vivo neural imaging. In order to reach the full potential of reflectance PLI systems, some key questions remain such as the ability of PLI to resolve crossing fibers, and the sensitivity of reflectance PLI to fiber inclination. Tissue phantoms are one potential method to isolate these issues in order to investigate them. In this proceeding, a five-wavelength reflectance Mueller matrix polarimeter is used for imaging of promising PLI tissue phantoms as well as regions of interest in fixed ferret brain samples. The retardance, diattenuation and depolarization mappings are derived from the Mueller matrix and studied in order to assess the sensitivity of this polarimeter configuration to different fiber orientations.
Understanding microscale physiology and microstructural cellular features of the brain is key to understanding the mechanisms of neurodegenerative diseases and injury, as well as the prominent changes that neurons and glia in the brain undergo in development and aging which reflect functional state. Non-invasive imaging modalities sensitive to the microscale - especially diffusion magnetic resonance imaging (dMRI) - are extremely promising for three-dimensional mapping of cellular microstructure of brain tissues and brain connectivity via tractography; however, there is a need for robust validation techniques to verify and improve the biological accuracy of fiber orientation information derived from these techniques. Recent advances in dMRI acquisition and modeling have moved toward probing of the more complex grey matter architecture, challenging current validation techniques, which are largely based on ex vivo staining and microscopy and focused on white matter. Polarized light imaging (PLI) has been shown to be a successful technique for high resolution, direct, microstructural imaging and has been applied to dMRI validation with clear advantages over conventional staining and microscopy techniques. Conventionally, PLI is applied to thin, sectioned samples in transmission mode, but unlike histologic staining, PLI can be extended to operate with high sensitivity in reflectance mode and even extended to 3D imaging to bridge the gap toward in vivo validation of dMRI measurements of orientation features in both gray and white matter of the brain. In this report we investigate the use of backscattering Mueller Matrix polarimetry to characterize the microstructural content of intact Ferret brain specimens. The experimental results show that backscattering polarimetry can probe white matter fiber coherence and fiber orientation in whole brain specimens, and show promise for probing grey matter microstructure. Ultimately, these preliminary results motivate further study to fully understand how backscattering polarimetry can best be used for validation of in vivo microstructural imaging of the brain.
Ground truth validation methods are essential to improve the accuracy of biophysical representation by diffusion MRI methods. The objective of this study is to advance PLI methodology for thick tissue imaging of fiber distributions by application of multispectral backscattering polarimetry, and of the Mueller matrix mathematical framework for unmixing contributions from depolarization, diattenutation, and retardance. Our results indicate that orientation features derived from PLI are in concordance with known brain physiology. Due to the consistent presence of retardance even in areas of crossing fibers, the results suggest that retardance angle is most sensitive to microstructural features rather than macroscopic geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.