Atrial fibrillation (AF) -the most common arrhythmia -significantly increases the risk of stroke and heart failure. Although catheter ablation can restore normal heart rhythms, patients with persistent AF who develop atrial fibrosis often undergo multiple failed ablations and thus increased procedural risks. Here, we present personalized computational modelling for the reliable predetermination of ablation targets, which are then used to guide the ablation procedure in patients with persistent AF and atrial fibrosis. We first show that a computational model of the atria of patients identifies fibrotic tissue that if ablated will not sustain AF. We then integrated the target-ablation sites in a clinical-mapping system, and tested its feasibility in 10 patients with persistent AF. The computational prediction of ablation targets avoids lengthy electrical mapping Reprints and permissions information is available at www.nature.com/reprints.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Background - Pulmonary vein isolation (PVI) is an effective treatment strategy for patients with atrial fibrillation (AF), but many experience AF recurrence and require repeat ablation procedures. The goal of this study was to develop and evaluate a methodology which combines machine learning (ML) and personalized computational modeling to predict, prior to PVI, which patients are most likely to experience AF recurrence after PVI. Methods - This single-center retrospective proof-of-concept study included 32 patients with documented paroxysmal AF who underwent PVI and had pre-procedural late gadolinium enhanced magnetic resonance imaging (LGE-MRI). For each patient, a personalized computational model of the left atrium simulated AF induction via rapid pacing. Features were derived from pre-PVI LGE-MRI images and from results of simulations (SimAF). The most predictive features were used as input to a quadratic discriminant analysis ML classifier, which was trained, optimized, and evaluated with 10-fold nested cross validation to predict the probability of AF recurrence post-PVI. Results - In our cohort, the ML classifier predicted probability of AF recurrence with an average validation sensitivity and specificity of 82% and 89%, respectively, and a validation AUC of 0.82. Dissecting the relative contributions of SimAF and raw images to the predictive capability of the ML classifier, we found that when only features from SimAF were used to train the ML classifier, its performance remained similar (validation AUC=0.81). However, when only features extracted from raw images were used for training, the validation AUC significantly decreased (0.47). Conclusions - ML and personalized computational modeling can be used together to accurately predict, using only pre-PVI LGE-MRI scans as input, whether a patient is likely to experience AF recurrence following PVI, even when the patient cohort is small.
Background Bipolar electrogram voltage during sinus rhythm (V SR ) has been used as a surrogate for atrial fibrosis in guiding catheter ablation of persistent atrial fibrillation (AF), but the fixed rate and wavefront characteristics present during sinus rhythm may not accurately reflect underlying functional vulnerabilities responsible for AF maintenance. Objective The purpose of this study was determine whether, given adequate temporal sampling, the spatial distribution of mean AF voltage (V mAF ) better correlates with delayed-enhancement magnetic resonance imaging (MRI-DE)–detected atrial fibrosis than V SR . Methods AF was mapped (8 seconds) during index ablation for persistent AF (20 patients) using a 20-pole catheter (660 ± 28 points/map). After cardioversion, V SR was mapped (557 ± 326 points/map). Electroanatomic and MRI-DE maps were co-registered in 14 patients. Results The time course of V mAF was assessed from 1–40 AF cycles (∼8 seconds) at 1113 locations. V mAF stabilized with sampling >4 seconds (mean voltage error 0.05 mV). Paired point analysis of V mAF from segments acquired 30 seconds apart (3667 sites; 15 patients) showed strong correlation (r = 0.95; P <.001). Delayed enhancement (DE) was assessed across the posterior left atrial (LA) wall, occupying 33% ± 13%. V mAF distributions were (median [IQR]) 0.21 [0.14–0.35] mV in DE vs 0.52 [0.34–0.77] mV in non-DE regions. V SR distributions were 1.34 [0.65–2.48] mV in DE vs 2.37 [1.27–3.97] mV in non-DE. V mAF threshold of 0.35 mV yielded sensitivity of 75% and specificity of 79% in detecting MRI-DE compared with 63% and 67%, respectively, for V SR (1.8-mV threshold) . Conclusion The correlation between low-voltage and posterior LA MRI-DE is significantly improved when acquired during AF vs sinus rhythm. With adequate sampling, mean AF voltage is a reproducible marker reflecting the functional response to the underlying persistent AF substrate.
Atrial fibrillation (AF) patients are at high risk of stroke, with the left atrial appendage (LAA) found to be the most common site of clot formation. Presence of left atrial (LA) fibrosis has also been associated with higher stroke risk. However, the mechanisms for increased stroke risk in patients with atrial fibrotic remodeling are poorly understood. We sought to explore these mechanisms using fluid dynamic analysis and to test the hypothesis that the presence of LA fibrosis leads to aberrant hemodynamics in the LA, contributing to increased stroke risk in AF patients. We retrospectively collected late-gadolinium-enhanced MRI (LGE-MRI) images of eight AF patients (four persistent and four paroxysmal) and reconstructed their 3D LA surfaces. Personalized computational fluid dynamic simulations were performed, and hemodynamics at the LA wall were quantified by wall shear stress (WSS, friction of blood), oscillatory shear index (OSI, temporal directional change of WSS), endothelial cell activation potential (ECAP, ratio of OSI and WSS), and relative residence time (RRT, residence time of blood near the LA wall). For each case, these hemodynamic metrics were compared between fibrotic and non-fibrotic portions of the wall. Our results showed that WSS was lower, and OSI, ECAP, and RRT was higher in the fibrotic region as compared to the non-fibrotic region, with ECAP (p = 0.001) and RRT (p = 0.002) having significant differences. Case-wise analysis showed that these differences in hemodynamics were statistically significant for seven cases. Furthermore, patients with higher fibrotic burden were exposed to larger regions of high ECAP, which represents regions of low WSS and high OSI. Consistently, high ECAP in the vicinity of the fibrotic wall suggest that local blood flow was slow and oscillating that represents aberrant hemodynamic conditions, thus enabling prothrombotic conditions for circulating blood. AF patients with high LA fibrotic burden had more prothrombotic regions, providing more sites for potential clot formation, thus increasing their risk of stroke.
Aims Inadequate modification of the atrial fibrotic substrate necessary to sustain re-entrant drivers (RDs) may explain atrial fibrillation (AF) recurrence following failed pulmonary vein isolation (PVI). Personalized computational models of the fibrotic atrial substrate derived from late gadolinium enhanced (LGE)-magnetic resonance imaging (MRI) can be used to non-invasively determine the presence of RDs. The objective of this study is to assess the changes of the arrhythmogenic propensity of the fibrotic substrate after PVI. Methods and results Pre- and post-ablation individualized left atrial models were constructed from 12 AF patients who underwent pre- and post-PVI LGE-MRI, in six of whom PVI failed. Pre-ablation AF sustained by RDs was induced in 10 models. RDs in the post-ablation models were classified as either preserved or emergent. Pre-ablation models derived from patients for whom the procedure failed exhibited a higher number of RDs and larger areas defined as promoting RD formation when compared with atrial models from patients who had successful ablation, 2.6 ± 0.9 vs. 1.8 ± 0.2 and 18.9 ± 1.6% vs. 13.8 ± 1.5%, respectively. In cases of successful ablation, PVI eliminated completely the RDs sustaining AF. Preserved RDs unaffected by ablation were documented only in post-ablation models of patients who experienced recurrent AF (2/5 models); all of these models had also one or more emergent RDs at locations distinct from those of pre-ablation RDs. Emergent RDs occurred in regions that had the same characteristics of the fibrosis spatial distribution (entropy and density) as regions that harboured RDs in pre-ablation models. Conclusion Recurrent AF after PVI in the fibrotic atria may be attributable to both preserved RDs that sustain AF pre- and post-ablation, and the emergence of new RDs following ablation. The same levels of fibrosis entropy and density underlie the pro-RD propensity in both pre- and post-ablation substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.