Recognition is a fundamental process on which all subsequent behaviors are based at every organizational level, from the gene up to the super-organism. At the whole organism level, visual recognition is the best understood. However, chemical communication is far more widespread than visual communication, but despite its importance is much less understood. Ants provide an excellent model system for chemical ecology studies as it is well established that compounds known as cuticular hydrocarbons (CHCs) are used as recognition cues in ants. Therefore, stable species-specific odors should exist, irrespective of geographic locality. We tested this hypothesis by comparing the CHC profiles of workers of twelve species of Myrmica ants from four countries across Europe, from Iberia to the Balkans and from the Mediterranean to Fennoscandia. CHCs remained qualitatively stable within each species, right down to the isomer level. Despite the morphological similarity that occurs within the genus Myrmica, their CHCs were highly diverse but remarkably species-specific and stable across wide geographical areas. This indicates a genetic mechanism under strong selection that produces these species-specific chemical profiles, despite each species encountering different environmental conditions across its range.Electronic supplementary materialThe online version of this article (doi:10.1007/s10886-016-0784-x) contains supplementary material, which is available to authorized users.
Deception is widespread throughout the animal kingdom and various deceptive strategies are exemplified by social parasites. These are species of ants, bees and wasps that have evolved to invade, survive and reproduce within a host colony of another social species. This is achieved principally by chemical deception that tricks the host workers into treating the invading parasite as their own kin. Achieving levels of acceptance into typically hostile host colonies requires an amazing level of deception as social insects have evolved complex species- and colony-specific recognition systems. This allows the detection of foreigners, both hetero- and con-specific. Therefore, social parasitic ants not only have to overcome the unique species recognition profiles that each ant species produces, but also the subtle variations in theses profiles which generate the colony-specific profiles. We present data on the level of chemical similarity between social parasites and their hosts in four different systems and then discuss these data in the wider context with previous studies, especially in respect to using multivariate statistical methods when looking for differences in these systems.
Invasive alien species (IAS) are known to be a major threat to biodiversity and ecosystem function and there is increasing evidence of their impacts on human health and economies globally. We undertook horizon scanning using expert-elicitation to predict arrivals of IAS that could have adverse human health or economic impacts on the island of Cyprus. Three hundred and twenty five IAS comprising 89 plants, 37 freshwater animals, 61 terrestrial invertebrates, 93 terrestrial vertebrates, and 45 marine species, were assessed during a two-day workshop involving 39 participants to derive two ranked lists: (1) IAS with potential human health impacts (20 species ranked within
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.