Telomerase is a major new target for the rational design of novel anticancer agents. We have previously identified anthraquinone-based molecules capable of inhibiting telomerase by stabilizing G-quadruplex structures formed by the folding of telomeric DNA. In the present study we describe the synthesis and biological evaluation of a series of analogous fluorenone-based compounds with the specific aims of, first, determining if the anthraquinone chromophore is a prerequisite for activity and, second, whether the conventional cytotoxicity inherent to anthraquinone-based molecules may be reduced by rational design. This fluorenone series of compounds exhibits a broad range of telomerase inhibitory activity, with the most potent inhibitors displaying levels of activity (8-12 microM) comparable with other classes of G-quadruplex-interactive agents. Comparisons with analogous anthraquinone-based compounds reveal a general reduction in the level of cellular cytotoxicity. Molecular modeling techniques have been used to compare the interaction of fluorenone- and analogous anthraquinone-based inhibitors with a human G-quadruplex structure and to rationalize their observed biological activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.